论文部分内容阅读
针对传统微表情识别方法识别率低及过程复杂等问题,设计了一种浅层的双时空多尺度神经网络TSTNet (Two-Stream spatial-Temporal Network)模型.利用局部二值模式(LBP)提取SMIC和CASMEⅡ微表情数据库的纹理特性,将其输入到组合的3维卷积神经网络(3DCNN)与卷积的长短期记忆网络(ConvLSTM)中同时提取时间和空间信息,在模型中加入丢弃算法并多路提取特征,减小过拟合风险的同时学习更丰富的特征.在SMIC和CASMEⅡ微表情数据库上的识别率分别达到了67.