论文部分内容阅读
采用基于正交约束的非迭代PLS可以实现PLS成分的快速有效抽取,但不能保证所抽取的成分之间不相关。而基于统计不相关约束的非迭代PLS建模方法所抽取的成分之间是无关的,从而可以保证图像识别时的有效性和稳定性。基于2DPCA思想的2DPLS特征抽取技术,直接从图像矩阵中抽取特征,能有效地解决小样本问题。但在使用PLS对单特征数据进行维数压缩时,传统的类标编码过于简单,为了充分利用数据分布信息,采用模糊k-近邻法对每个样本赋予一个样本标号,将近邻样本类别信息反映在该样本的类编码中,从而提出了基于样本标号的