论文部分内容阅读
针对背景复杂情况下行人检测误检率较大的问题,提出一种新的基于前景分割的行人检测方法.本方法在样本训练过程中,通过对图像的初始轮廓线进行有向分水岭转换,然后由超度量轮廓图算法得到图像内一个个封闭的区域,把得到的封闭区域与设定框进行比较,区分封闭区域属于前景还是背景,进而把前景目标分割出来并进行训练;测试时,把待检测图像中的检测区域进行前景分割,求出前景的HOG特征并用SVM分类,确定检测区域内是否有行人.这样保证了在训练阶段和检测阶段都去除了背景噪声的影响,实验结果表明,提出的方法能有效的提高检测精度.