论文部分内容阅读
针对工业现场数据的强非线性、时序性特点,提出了一种结合移动窗口的局部加权自适应核偏最小二乘(LW-AKPLS)算法。在建模阶段,通过移动窗口法对数据集进行动态时序划分后,利用自适应核PLS(AKPLS)进行建模;与固定核函数的核PLS(KPLS)不同,AKPLS对于不同子数据集能自适应地选出各自的最优核函数,使模型结构与子数据集充分匹配,有效提高了子模型的预测精度;在预测阶段,利用集成学习进行子模型加权预测,获得的全局模型实用性高、泛化能力强。最后将所提算法在某焦化系统历史数据集上进行了测试应用,预