论文部分内容阅读
针对传统红外与可见光图像融合中存在的一些不足,提出一种新的基于非下采样剪切波变换(NSST)和双通道脉冲耦合神经网络模型(2APCNN)的红外与可见光图像融合算法.该算法首先对红外图像进行预处理,提高源图像的对比度,再对红外与可见光图像进行NSST分解得到低频和高频子带系数;然后对分解后的低频子带系数进行二维小波分解再次得到相应的低频和高频子带,低频部分采用一种基于显著图的融合策略,高频部分采用绝对值取大的原则,之后再对低频和高频采用小波逆变换得到NSST重构所需的低频部分;接着对NSST分解后的高