论文部分内容阅读
With a view to produce intermediate temperature SOFCs, yttria and scandia doped zirconia with a core-shell structure was prepared, then an anode supported fuel cell was fabricated by a spray method. The influences of the scandia content in the electrolyte and atmosphere conditions used in the testing experiments on phase composition, microstructure and fuel cell performance were investigated. The electrolyte was composed of cubic and tetragonal phases and SEM pictures revealed very fine grain sizes and a smooth surface of the electrolyte film, though some defects were observed in samples with high Scandia content. Coating scandia on partially stabilized zirconium particles improves both ionic conductivity of the electrolyte and power density of the fuel cell distinctly below 750 1C. Anodes were pre-sintered at 1200 1C before co-sintering with the electrolyte film to ensure that the shrinkage percentage was close to that of the electrolyte during co-sintering, avoiding warping of cell.