论文部分内容阅读
在学习过程中,错误的出现是不可避免的。因此,对错误进行系统的分析是非常重要的:首先教师可以通过错误来发现学生的不足,从而采取相应的补救措施;其次,错误从一个特定的角度揭示了学生掌握知识的过程;最后,错误对于学生来说也是不可或缺的,是学生在学习过程中对所学知识不断尝试的结果。本文就初中学生数学解题错误作一简要分析。
一、对待初中学生解题错误的态度
错误是正确的先导,成功的开始。学生所犯错误及其对错误的认识,是其知识宝库的重要组成部分。笔者至今仍然对学生时代的一节数学课记忆犹新。
当时老师讲过a2-b2=(a+b)(a-b)后,让学生自己分解x4-y4。很快大家就做完了。老师一边巡视一边督促检查。但在最后教师宣布只有1人做对时,我们都感到非常吃惊。大部分人把x4-y4分解为(x2+y2)(x2-y2),错在哪里呢?做对同学的答案是(x2+y2)(x+y)(x-y)。两相对照,原来还可以继续分解。于是,分解因式要进行到每个因式都不能再分解为止,给每个同学都留下了深刻的印象。由此也可以看出,利用学生典型错误并进行正确诱导会收到良好的教学效果。
二、初中学生解题错误的原因
学生顺利正确地完成解题,表明其在分析问题,提取、运用相应知识的环节上没有受到干扰或者说克服了干扰。在上述环节上不能排除干扰,就会出现解题错误。就初中学生解题错误而言,造成错误的干扰来自以下两方面:一是小学数学的干扰,二是初中数学前后知识的干扰。
(一)小学数学的干扰
在初中一开始,学生学习小学数学形成的某些认识会妨碍他们学习代数初步知识,使其产生解题错误。
在小学数学中,解题结果常常是一个确定的数。受此影响,学生在解答下述问题时出现混乱与错误。例如这样一题:礼堂第一排有a个座位,后面每排都比前1排多1个座位,第2排有几个座位?第3排呢?设m为第n排的座位数,那么m是多少?求a=20、n=19时,m的值。学生在解答上述问题时,受结果是确定的数的影响,把用n表示m与求m的值混为一谈,暴露出其思考过程受到上述干扰的痕迹。
再有,学生习惯于算术解法解应用题,这会对学生学习代数方法列方程解应用题产生干扰。例如:甲、乙两站间的路程为360km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km,两列火车同时开出,相向而行,经过多少小时相遇?有人列出的方程为x=360/48+72。由此可以看出学生拘泥于算术解法的痕迹。而初中需要列出48x+72x=360这样的方程,这表明学生对已知数和未知数之间的相等关系的把握程度。
总之,初中开始阶段,学生解题错误的原因常可追溯到小学数学学习的影响。
(二)初中数学前后知识的干扰
随着初中知识的展开,初中数学知识本身也会前后相互干扰。例如,在学有理数的减法时,教师反复强调减去一个数等于加上它的相反数,因而3-7中7前面的符号“-”是减号给学生留下了深刻的印象。紧接着学习代数和,又要强调把3-7看成正3与负7之和,“-”又成了负号。学生不禁产生到底要把“-”看成减号还是负号的困惑。这个困惑不能很好地消除,学生就会产生运算错误。
总之,这种知识的前后干扰,常常使学生在学习新知识时出现困惑,在解题时选错或用错知识,导致错误的发生。
三、减少初中学生解题错误的方法
由上所述,学生不能顺利正确地完成解题,产生解题错误,表明其在解题过程中受到干扰。因此,减少初中解题错误的方法是预防和排除干扰。为此,要抓好课前、课内、课后三个环节。
(一)课前准备要有预见性
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,教师如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。因此备课时,要仔细研究教科书正文中的防错文字、例题后的注意、小结与复习中应该注意的几个问题等。同时还要揣摸学生学习本课内容的心理过程,授业解惑,使学生预先明了容易出错之处,防患于未然。如果学生出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误能够为揭示错误、消灭错误打下基础。
(二)课内讲解要有针对性
在课内讲解时,要对学生可能出现的问题进行针对性的讲解。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别和联系。对于规律,应当引导学生搞清它们的来源,分清它们的条件和结论,了解它们的用途和适用范围,以及应用时应注意的问题。教师要给学生展示揭示错误、排除错误的手段,使学生会识别错误、改正错误。要通过课堂教学,不仅教会学生知识,而且要使学生学会识别对错,知错能改。
(三)课后讲评要有总结性
要认真分析学生作业中的问题,总结出典型错误加以评述。通过讲评,进行适当的复习与总结,也使学生再经历一次修正的过程,增强识别、改正错误的能力。
综上所述,学生的学习过程经历了从不知到知,从知之不多到知之较多,其间正确与错误交织,要正确对待错误、认真分析,有效控制,就能够使学生的学习顺利进行,能力逐渐提高。
一、对待初中学生解题错误的态度
错误是正确的先导,成功的开始。学生所犯错误及其对错误的认识,是其知识宝库的重要组成部分。笔者至今仍然对学生时代的一节数学课记忆犹新。
当时老师讲过a2-b2=(a+b)(a-b)后,让学生自己分解x4-y4。很快大家就做完了。老师一边巡视一边督促检查。但在最后教师宣布只有1人做对时,我们都感到非常吃惊。大部分人把x4-y4分解为(x2+y2)(x2-y2),错在哪里呢?做对同学的答案是(x2+y2)(x+y)(x-y)。两相对照,原来还可以继续分解。于是,分解因式要进行到每个因式都不能再分解为止,给每个同学都留下了深刻的印象。由此也可以看出,利用学生典型错误并进行正确诱导会收到良好的教学效果。
二、初中学生解题错误的原因
学生顺利正确地完成解题,表明其在分析问题,提取、运用相应知识的环节上没有受到干扰或者说克服了干扰。在上述环节上不能排除干扰,就会出现解题错误。就初中学生解题错误而言,造成错误的干扰来自以下两方面:一是小学数学的干扰,二是初中数学前后知识的干扰。
(一)小学数学的干扰
在初中一开始,学生学习小学数学形成的某些认识会妨碍他们学习代数初步知识,使其产生解题错误。
在小学数学中,解题结果常常是一个确定的数。受此影响,学生在解答下述问题时出现混乱与错误。例如这样一题:礼堂第一排有a个座位,后面每排都比前1排多1个座位,第2排有几个座位?第3排呢?设m为第n排的座位数,那么m是多少?求a=20、n=19时,m的值。学生在解答上述问题时,受结果是确定的数的影响,把用n表示m与求m的值混为一谈,暴露出其思考过程受到上述干扰的痕迹。
再有,学生习惯于算术解法解应用题,这会对学生学习代数方法列方程解应用题产生干扰。例如:甲、乙两站间的路程为360km,一列慢车从甲站开出,每小时行驶48km,一列快车从乙站开出,每小时行驶72km,两列火车同时开出,相向而行,经过多少小时相遇?有人列出的方程为x=360/48+72。由此可以看出学生拘泥于算术解法的痕迹。而初中需要列出48x+72x=360这样的方程,这表明学生对已知数和未知数之间的相等关系的把握程度。
总之,初中开始阶段,学生解题错误的原因常可追溯到小学数学学习的影响。
(二)初中数学前后知识的干扰
随着初中知识的展开,初中数学知识本身也会前后相互干扰。例如,在学有理数的减法时,教师反复强调减去一个数等于加上它的相反数,因而3-7中7前面的符号“-”是减号给学生留下了深刻的印象。紧接着学习代数和,又要强调把3-7看成正3与负7之和,“-”又成了负号。学生不禁产生到底要把“-”看成减号还是负号的困惑。这个困惑不能很好地消除,学生就会产生运算错误。
总之,这种知识的前后干扰,常常使学生在学习新知识时出现困惑,在解题时选错或用错知识,导致错误的发生。
三、减少初中学生解题错误的方法
由上所述,学生不能顺利正确地完成解题,产生解题错误,表明其在解题过程中受到干扰。因此,减少初中解题错误的方法是预防和排除干扰。为此,要抓好课前、课内、课后三个环节。
(一)课前准备要有预见性
预防错误的发生,是减少初中学生解题错误的主要方法。讲课之前,教师如果能预见到学生学习本课内容可能产生的错误,就能够在课内讲解时有意识地指出并加以强调,从而有效地控制错误的发生。因此备课时,要仔细研究教科书正文中的防错文字、例题后的注意、小结与复习中应该注意的几个问题等。同时还要揣摸学生学习本课内容的心理过程,授业解惑,使学生预先明了容易出错之处,防患于未然。如果学生出现问题而未查觉,错误没有得到及时的纠正,则遗患无穷,不仅影响当时的学习,还会影响以后的学习。因此,预见错误能够为揭示错误、消灭错误打下基础。
(二)课内讲解要有针对性
在课内讲解时,要对学生可能出现的问题进行针对性的讲解。对于容易混淆的概念,要引导学生用对比的方法,弄清它们的区别和联系。对于规律,应当引导学生搞清它们的来源,分清它们的条件和结论,了解它们的用途和适用范围,以及应用时应注意的问题。教师要给学生展示揭示错误、排除错误的手段,使学生会识别错误、改正错误。要通过课堂教学,不仅教会学生知识,而且要使学生学会识别对错,知错能改。
(三)课后讲评要有总结性
要认真分析学生作业中的问题,总结出典型错误加以评述。通过讲评,进行适当的复习与总结,也使学生再经历一次修正的过程,增强识别、改正错误的能力。
综上所述,学生的学习过程经历了从不知到知,从知之不多到知之较多,其间正确与错误交织,要正确对待错误、认真分析,有效控制,就能够使学生的学习顺利进行,能力逐渐提高。