论文部分内容阅读
用光滑粒子流体动力学( Smoothed Particle Hydrodynamics ,简称SPH)方法对函数及其一阶和二阶空间导数核近似进行了详细研究。讨论了几种SPH方法的计算思路,给出了一维、二维和三维情况下分别用CSPH(Corrective SPH)、MSPH(Modified SPH)、SSPH(symmetric SPH)方法,对函数及其一阶和二阶空间导数进行核近似的计算方法,通过一维和二维数值算例,对四种不同的SPH方法进行了比较和误差分析,结果表明MSPH和SSPH方法极大地提高了边界处的精度而且SSPH方法的误差最小。