论文部分内容阅读
将粗糙集理论同神经网络结合起来,提出了一种新的粗糙神经网络的构造算法。该算法针对含有连续属性的不一致决策表,采用整体离散化方法,对连续属性离散化,并用离散后的结果作为输入向量;然后利用粗糙集理论对不一致性决策表进行属性约简,减少神经网络的输入向量;最后使用经典数据对该神经网络进行训练。结果表明本神经网络提高了网络的收敛速度和泛化能力,改善了网络的预测性能。