论文部分内容阅读
借助图像处理和识别技术,建立复合材料真实微观结构的有限元模型,并运用该模型分析计算SiCp/2024Al复合材料在应变速率为200~14 000 s-1下的动态力学性能。在真实微观结构的有限元模型中,无规则的SiC颗粒自由分布在铝合金基体材料中,SiC颗粒形貌保持原状。有限元模拟结果表明,动态压缩过程中,低体积分数的SiCp/2024Al复合材料流变应力随着应变速率的增加呈现先升高后降低的趋势。在较高应变率下,SiCp/2024Al复合材料流变应力出现降低趋势是由于复合材料内部损失或铝合金基体热软化甚至局部熔化导致的。当应变低于0.62时,带有棱角的SiC颗粒比圆形SiC颗粒强化效果好,当应变大于0.62时,情况正好相反。
With the help of image processing and recognition technology, the finite element model of the real microstructure of composites was established. The dynamic mechanical properties of SiCp / 2024Al composites at 200-14000 s-1 strain rate were calculated and analyzed. In the real microstructure finite element model, irregular SiC particles are freely distributed in the aluminum alloy matrix material, and the morphology of the SiC particles remains the same. Finite element simulation results show that the flow stress of SiCp / 2024Al composites with low volume fraction tends to increase firstly and then decrease with the increase of strain rate. At higher strain rates, the tendency of the flow stress of SiCp / 2024Al composites to decrease appears to be due to the internal loss of the composites or the thermal softening and even local melting of the aluminum alloy matrix. When the strain is lower than 0.62, the SiC particles with corners strengthen better than the round SiC particles. When the strain is greater than 0.62, the opposite is true.