论文部分内容阅读
DDoS攻击是当今网络包括下一代网络IPv6中最严重的威胁之一,提出一种基于流量自相似的IPv6的实时检测方法。分别采用改进的WinPeap实现“流”数据的实时捕获和监测,和将Whittle ML方法首次应用于DDoS攻击检测。针对Hurst估值方法的选择和引入DDoS攻击流的网络进行对比仿真实验,结果表明:Hurst估值相对误差,Whittle ML方法比小波变换减少0.07%;检测到攻击的误差只有0.042%,准确性达99.6%;增强了DDoS攻击检测的成功率和敏感度。