论文部分内容阅读
基因表达式编程具有强大的函数挖掘能力,有助于在实验数据上提炼数学模型、揭示事物本质规律.尽管标准GEP算法通过改进遗传操作在一定程度上克服了早熟现象,但在解决实际问题中仍常表现出算法的不稳定;此外,标准GEP算法挖掘出的函数表达式往往冗长,可解释性差.针对这些问题本文做了如下工作:(1)对标准GEP算法的基因进行了新的定义,改进了标准GEP算法的基因构成,提高了GEP算法的通用性;(2)将模拟退火引入到标准GEP算法的选择算子中,提出了基于模拟退火的基因改进型基因表达式编程算法(RG—GEP—SA);(3