论文部分内容阅读
本文围绕一个三角形能否被分成两个等腰三角形这个问题展开探究.从两个特例出发,得到一个三角形能够被分成两个等腰三角形的必要条件,然后将这个从一般三角形得出的规律,运用到特殊的等腰三角形中去.这种从特殊到一般,又从一般回到特殊的思维方法,是人们对事物认识的必由之路.探究中,借助分类、数形结合等数学方法,表达严密,思维有序,体现了数学探究的一般规律.一、问题如果一个三角形恰好能够被分成两个等
This paper focuses on the issue of whether a triangle can be divided into two isosceles triangles.From two special cases, we get a necessary condition that a triangle can be divided into two isosceles triangles, and then the law derived from the general triangle, The use of special isosceles triangle to go.This from special to the general, but also from the general back to the special way of thinking, is the only way for people to understand things.In the study, by means of classification, mathematical combination of mathematical methods, the expression of tight , Orderly thinking, reflects the general law of mathematical inquiry. First, the problem if a triangle happens to be divided into two