2004年第五期初中数学问题参考解答

来源 :数学学习 | 被引量 : 0次 | 上传用户:feiflymail
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
一、求证 :f(n) =an + 2 +(a +1 ) 2n + 1被a2 +a +1整除 ,其中a是整数 ,n是自然数 .证明 :( 1 )当n =0时 ,f( 0 ) =a2 +(a +1 ) =a2 +a+1能被a2 +a +1整除 .( 2 )假设当n =k时 ,f(k) =ak+ 2 +(a +1 ) 2k+ 1能被a2 +a +1整除 .当n =k +1时 ,有f(k +1 ) =ak+ 3 +(a +1 ) 2 (k + 1. Verify that f(n) = an + 2 + (a +1) 2n + 1 is divisible by a2 + a +1, where a is an integer and n is a natural number. Proof: (1) When n = 0, f (0) =a2 +(a +1) =a2 +a+1 can be divisible by a2 +a +1. (2) Suppose that when n = k, f(k) = ak + 2 + (a +1) 2k+ 1 can be divisible by a2 +a +1. When n =k +1, there is f(k +1 )=ak+ 3 +(a +1 ) 2 (k +
其他文献
学校旁有一家咖啡店  一家奇怪的咖啡店  没有标牌,没有宣传  什么都没有  只有一只黑色的老猫  身上有白色的斑纹    店主的脸白得可怕  她总是端上一杯咖啡  顺便捎上一个笑容  或是一个眼神  而我总是看不懂  她那诡异的笑容  和那深邃的眼神    男生女生  出出进进,进进出出  他们大都面无表情 来去匆匆  我很怀疑  那个女巫是否在咖啡中加了魔法  每每想到这里  总有一股凉风从背
上海是个传奇的诞生地,更是可以肆意放飞青春的处所。在这个现代都市里,如过江之鲫的文学膜拜者不远千里来到这陌生的异乡,蜗居在亭子间,试图一展身手。相对而言,穆时英似乎
本文报道40例糖尿病患者,22例糖尿病合并冠心病患者(简称合并组),35例冠心病患者及45例正常人血清中镁(MS)、铬(Cr)、锰(Mn)、锶(Sr)值的变化。结果表明,糖尿病组、冠心病组
深化干部人事制度改革张瑞鹏,张贵福(太原铁路分局人事科030013)1改革干部任用制度,引入竞争机制在干部的选拔任用上,我们改革了单一的任命制,实行了聘任制、考聘制和招聘制,全面引入了竞争
A组一、填空题1 .关于x的方程 6mx2 +3nx +2 =0和 2 4mx2 +1 0nx+7=0有公共根是 12 ,则m =,n =.2 .关于x的二次三项式 (m -1 )x2 +4 (m -1 )x +2m +2是一个完全平方式 ,则m的
我终于来到这座大门前。门侧高悬的匾额上,四个墨绿色的大字端正谨严、遒劲有力—“万木草堂”。就是这里了,一路寻访而来,颇费周折,被询问的路人听及此处,大多露出疑惑的神
台州海百纳船舶设备科技有限公司成立于2008年,现已发展为船舶设备的技术开发、生产制造及销售管理的高新技术企业。公司自主研发的船舶废水处理用高效油水分离器2010年被浙
简要回顾了1993年以来铁路运输工作所取得的成绩;并就增运指标的分劈及其实现措施,车务、客运、货运部门安全生产保证,基础工作的强化,路风建设,加强运输工作领导,转变领导作
我曾像天上的白云一样从云冈石窟飘过,但心却留了下来。当看到中国残疾人艺术团的《千手观音》,我仿佛找到某种默契。那天无意看到一个访谈节目,该舞蹈编导张继钢透露:“我的
在英格兰西北海岸方圆2300平方公里的湖区(Lake District)徒步旅行,如同走在油画里。顺着旅店门口的坡路走上5分钟,便是温德米尔湖——约翰·济慈称它“能让人忘掉生活中的区