论文部分内容阅读
凝聚型层次聚类和模糊C-均值聚类是聚类中的两种常用算法,每种算法都有其自己的优点、缺点及适用的对象和范围。针对FCM算法的对初始值敏感,以及目标函数没有考虑类间距离的缺点,通过使用距离阚值,把凝聚型层次聚类与模糊C-均值聚类算法相结合,产生一种新的基于距离闲值的FCM算法,实验结果表明。这种算法能够自动的判断迭代的终止条件、快速有效的找到最佳聚类结果,从而实现对模糊C-均值聚类算法的自动优化。