论文部分内容阅读
We developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid to simulate the eccentric borehole acoustic field with side-wall acoustic logging tools in open and cased wells. Higher accuracy and lower computation cost were achieved with this scheme for modeling such an asymmetric wave field generated by a high frequency source near or on the borehole wall. We also modeled the cases with and without considering the effects of the tool body. The simulation results demonstrated that the logging tool body would attenuate the direct waves but have only little influence on the interface waves in such a borehole condition. The effects of the tool body on the wave field were significant only when the contrast of the elastic properties between tool body and borehole fluid was large.
We developed a parallelized scheme of 3D finite difference (3DFD) with non-uniform staggered grid to simulate the eccentric borehole acoustic field with side-wall acoustic logging tools in open and cased wells. Higher accuracy and lower computation cost were achieved with this scheme for modeling such an asymmetric wave field generated by a high frequency source near or on the borehole wall. We also modeled the cases with and without considering the effects of the tool body. The simulation results an example of the logging tool body would attenuate the direct waves but have only little influence on the interface waves in such a borehole condition. The effects of the tool body on the wave field were significant only when the contrast of the elastic properties between tool body and borehole fluid was large.