【摘 要】
:
语音合成技术在人机交互中扮演着重要角色,深度学习的发展带动语音合成技术高速发展。基于深度学习的语音合成技术在合成语音的质量和速度上都超过了传统语音合成技术。从基于深度学习的声码器和声学模型出发对语音合成技术进行综述,探讨各类声码器和声学模型的工作原理及其优缺点,在此基础上对语音合成系统进行综述,系统综述经典的基于深度学习的语音合成系统,对基于深度学习的语音合成技术进行展望。
【机 构】
:
中国人民解放军陆军工程大学指挥控制工程学院,中国人民解放军31121部队
【基金项目】
:
国家部委科技基金,江苏省自然科学基金青年基金项目(BK20150722)。
论文部分内容阅读
语音合成技术在人机交互中扮演着重要角色,深度学习的发展带动语音合成技术高速发展。基于深度学习的语音合成技术在合成语音的质量和速度上都超过了传统语音合成技术。从基于深度学习的声码器和声学模型出发对语音合成技术进行综述,探讨各类声码器和声学模型的工作原理及其优缺点,在此基础上对语音合成系统进行综述,系统综述经典的基于深度学习的语音合成系统,对基于深度学习的语音合成技术进行展望。
其他文献
从内容和形式上阐述了中学班会课在主题的选择和确定方面的一些基本要求和基本方法,告诉读者一个班级从形成到发展在不同阶段班会课主题内容的侧重点.列举了100多个富有针对
针对井式强对流退火炉存在的工艺周期长和砌体内的蓄热在冷却过程中被浪费的弊端,提出了采用脉冲水冷却系统的设想,对井式强对流退火炉进行改造。应用脉冲水冷却系统,不仅提
深度学习的迅速发展使得图像描述效果得到显著提升,针对基于深度神经网络的图像描述方法及其研究现状进行详细综述。图像描述算法结合计算机视觉和自然语言处理的知识,根据图像中检测到的内容自动生成自然语言描述,是场景理解的重要部分。图像描述任务中,一般采用由编码器和解码器组成的基本架构。改进编码器或解码器,应用生成对抗网络、强化学习、无监督学习以及图卷积神经网络等方法能有效提高图像描述算法的性能。对每类方法的代表模型算法的效果以及优缺点进行分析,并介绍适用的公开数据集,在此基础上进行对比实验。对图像描述面临的挑战以
流形学习是一类特殊的非线性求解问题,即从高维采样数据中恢复低维流形结构,以达到维数约简的目的,是模式识别与数据可视化中的重要方法。流形学习存在许多基于局部线性假设的数值解法,即显示地定义局部线性映射模型再进行全局优化,这些方法对于流形的形状、采样的方式都比较敏感。另一种非线性求解工具,神经网络,因为不依赖于具体数学模型,理论上具有较好的鲁棒性,但是流形学习的特殊非线性,使得传统神经网络很难达到满意的效果。针对上述问题,改进了一种同质双通道神经网络——孪生网络,并应用于流形学习。针对孪生网络的两条通道,设计
阻塞性睡眠呼吸暂停(Obstructive Sleep Apnea,OSA)是成年人较为常见的呼吸类疾病之一,该疾病的特点是睡眠过程中频繁出现上气道完全或部分塌陷,严重影响人们的睡眠质量以及身体健康。阻塞性睡眠呼吸暂停综合征的诊断主要依靠多导睡眠监测,但这种方法无法满足目前大量的诊断需求。随着人工智能的出现及发展,假设深度学习可以有效地协助医生进行诊断该综合征。主要从阻塞性睡眠呼吸暂停的临床诊断方式出发,介绍了颅面侧位片作为诊断数据集的优势,以及人工智能诊断OSA的现状,提出了人工智能辅助医师诊断OSA的
目前关于商品评论的深度网络模型难以有效利用评论中的用户信息和产品信息。提出一种基于注意力交互机制的层次网络(HNAIM)模型。该模型利用层次网络对不同粒度语义信息进行提取,并通过注意力交互机制在层次网络中通过捕捉用户、产品中的重要特征来帮助提取文本特征。最终将用户视角下的损失值和产品视角下的损失值作为辅助分类信息,并利用层次网络输出的针对用户或产品的关键文本特征进行训练和分类。三个公开数据集上对比结果表明,该模型较相关模型而言效果均有提升。
目标检测确定检测图像中目标对象所在区域及其类别,语义分割对检测图像实现像素级分类,实例分割可以定义为同时解决目标检测与语义分割问题,在分类的同时确定每个目标实例语义。实例分割网络在无人机驾驶、机器人抓取、工业筛检等领域具有重要应用意义,针对目前基于深度学习实例分割综述性文章的空白,对实例分割进展进行概述,按照单阶段实例分割与双阶段实例分割的分类对不同网络模型进行论述,重点介绍近两年网络框架的发展,总结各网络特点的同时提出未来发展方向。
以求异性提问激活思维,使学生学会多重角度处理问题的本领;以延伸性提问拓展思维,使学生学会应对危急的本领;以推理联想提问激活思维,使学生学会揭示课文内涵的本领.
Every one of us knows the sensation of going up, on retreat, toa high place and feeling ourselves so lifted up that we canhardly imagine the circumstances of o
针对现有的多标记迁移学习忽略条件分布而导致泛化能力不足的问题,设计了一种基于联合分布的多标记迁移学习(Multi-label Transfer Learning via Joint Distribution Alignment,J-MLTL)。分解原始特征生成特征子空间,在子空间中计算条件分布的权重系数,最小化跨领域数据的边际分布和条件分布差异;此外,为了防止标记内部结构信息损失,利用超图对具有多个相同标签的数据进行连接,保持领域内几何流行结构不受领域外知识结构的影响,进一步最小化领域间的分布差异。实验结