论文部分内容阅读
随着网络入侵行为的多样化和智能化,传统的入侵检测算法难以提取入侵行为包含的特征,在入侵检测性能上存在一定的不足.为此提出一种基于深度信念网络(Deep Belief Network,DBN)和三支决策(Three⁃Way Decisions)的入侵检测算法.首先利用深度信念网络从高维数据中提取特征,在多次特征提取后构建一个多粒度的特征空间;然后利用基于三支决策理论的分类器对入侵行为或正常行为进行即时决策,并根据不同粒度特征使用KNN分类器进一步分析边界域内不确定的网络行为.在NSL⁃KDD数据集上进行实验