论文部分内容阅读
A computer simulation procedure for metal powder die compaction was described. Friction behavior of metal powder during cold compaction was simulated by the finite element method. The movement of powder relative to the die wall was taken into consideration by utilizing the shear friction model. Friction between the powder and the rigid die wall leads to inhomogeneous density distribution during the compaction process. The floating die technique and double punch pressing can attain more homogenous compacts than the fixed die technique can do. The results obtained from numerical analysis agree well with the experimental results. Simulation model was built in MSC.Mentat, and MSC.Marc software was used to calculate the powder compaction process.
A movement simulation for metal powder die compaction was described. Friction behavior of metal powder during cold compaction was simulated by the finite element method. The movement of powder relative to the die wall was taken into consideration by utilizing the shear friction model. Friction between the powder and the rigid die wall leads to inhomogeneous density distribution during the compaction process. The floating die technique and double punch pressing can attain more homogenous compacts than the fixed die technique can do. Simulation model was built in MSC.Mentat, and MSC.Marc software was used to calculate the powder compaction process.