Lax等价定理在非线性方面的推广

来源 :应用数学 | 被引量 : 0次 | 上传用户:scenery747
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文证明了,用差分法求解非线性发展方程的初值问题,当方程适定,在差分格式相容的条件下,稳定性等价于收敛性和逐点Lipschitz条件。从而推广了对线性发展方程成立的Lax等价定理。
其他文献
本文中,我们应用比较几何的方法研究开流形的Excess与其拓扑之间的关系.我们证明了对于一个曲率下有界的开流形,当它的Excess被其临界半径的某个函数所界定时,它就有有限拓扑
基于Delta算子描述,统一研究连续时间代数Riccati方程(CARE)和离散时间代数Riccti方程(DARE)的定界估计问题,提出了统一代数Riccati方程(UARE)解矩阵的上下界,给出UARE中P与R
本文利用一个类似于Cheng和Yau引进的微分算子的新微分算子,得到了单位球面中常数量率的紧致子流形的一个刚性结果.
本文给出一个具有同样最佳常数π的Hilbert类不等式.作为应用,建立其等价形式及导出一些特殊的结果.
本文中,我们首先根据经典的Ricci曲率与Betti数的S.Bochner定理得到了ε-极小Riemann浸入子流形的数量曲率与Betti数的结果。然后,我们考虑了紧致连通Riemann流形中曲率与Betti数