论文部分内容阅读
由于滚动轴承的工作环境复杂,所采集的信号中通常含有大量噪声,噪声的存在会影响故障诊断的结果。为了提高噪声数据的诊断精度,采用改进的小波阈值函数结合栈式自编码器(stacked auto-encoder,SAE)对强噪声环境下的轴承数据进行故障诊断。首先通过改进阈值函数对噪声数据进行去噪,其次用小波包变换提取去噪数据的小波包能量,最后通过SAE得到故障的分类结果。通过在凯斯西储大学的轴承数据集上的实验表明,该模型能够在强噪声背景下得到较为准确的分类结果。