论文部分内容阅读
A novel 4 K separate two-stage pulse tube cooler (PTC) was designed and tested. The cooler consists of two separate pulse tube coolers, in which the cold end of the first stage regenerator is thermally connected with the mid- dle part of the second regenerator. Compared to the tradi- tional coupled multi-stage pulse tube cooler, the mutual interference between stages can be significantly eliminated. The lowest refrigeration temperature obtained at the first stage pulse tube was 13.8 K. This is a new record for single stage PTC. With two compressors and two rotary valves driving mode, the separate two-stage PTC obtained a refrig- eration temperature of 2.5 K at the second stage. Cooling capacities of 508 mW at 4.2 K and 15 W at 37.5 K were achieved simultaneously. A one-compressor and one-rotary valve driving mode has been proposed to further simplify the structure of separate type PTC.
A novel 4 K separate two-stage pulse tube cooler (PTC) was designed and tested. The cooler consists of two separate pulse tube coolers, in which the cold end of the first stage regenerator is thermally connected with the mid-dle part of the Compared to the tradi- tional coupled multi-stage pulse tube cooler, the mutual interference between stages can be significantly eliminated. The lowest refrigeration temperature obtained at the first stage pulse tube was 13.8 K. This is a new record for single stage PTC. With two compressors and two rotary valves driving mode, the separate two-stage PTC obtained a refrig- eration temperature of 2.5 K at the second stage. Cooling capacities of 508 mW at 4.2 K and 15 W at 37.5 K were realized simultaneously. A one-compressor and one-rotary valve driving mode has been proposed to further simplify the structure of separate type PTC.