论文部分内容阅读
提出一种解决双向主成分分析(BDPCA)中小样本问题的掌纹识别方法。把掌纹感兴趣区域图像经过2DGabor小波变换后得到的每个图像都作为独立的样本,以增加每一类掌纹的样本数。设计一种基于样本散度矩阵的改进BDPCA算法进行特征提取。采用训练样本的k值矩阵代替训练样本的平均值矩阵,从而获得最优投影矩阵。将2DGabor与改进的BDPCA算法相结合进行掌纹识别。在PolyU掌纹库中的实验结果表明,该方法不仅减少了不同训练样本对识别率的影响,而且能够提高识别率,甚至当每类训练样本数仅为1时,也能得到较高的