论文部分内容阅读
GMM与SVM的建模和识别性能具有较好的互补性,因此GMM-SVM在语种识别中得到广泛使用,以其为基础的GMM-MMI-SVM已成为语种识别的主流研究方法。但是SVM在判别时仅仅使用了训练样本中的一些特殊样本即支持向量,并没有使用全部样本,从而影响了系统识别性能的进一步提高。针对上述问题,提出一种基于核Fisher判别的分类算法——GMM—MMHFD。该算法的核心思想是用核Fisher准则(KFD)替代SVM分类准则,从语音片段中提取出特征向量序列,分别通过GMM-MMI分类器与GMM-KFD分类器进行判