论文部分内容阅读
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2012)12-0033-01
高考的重要性不言而喻,牵动着千万家庭。如何有效地备考,如何在最后三十天,有较高的提升,这是摆在每位家长、学生、教师面前的一大难题,本文试图从四个方面讨论此问题,不足之处,恳请批评指正。
首先,我们有必要了解学生目前的情况,学生经过一年的总复习,经历了一轮、二轮复习,学生已经掌握了什么,还需要什么,与高考的要求还有什么差距?针对差距和问题,如何在30天内,开展针对性的突破。
学生的情况(对于大部分学生)是会做一些题目,一些常见的题目,并且见识了大量的题目,但有些并非会做,或者没有深刻的认识,并且认识是离散的、不系统的。对于课本的基本知识、基本方法有了解,基本知道,但还可能存在小漏洞。好一点的学生可能,储存的题目多一些,基本知识掌握牢固点;差一点的学生可能少一些。还有在多次的模拟考试和综合练习,学生基本已经找到自己的位置。以及在多次的考试中,总结了一些考试的方法和策略,但可能不全面。还有对高考试题的分布有认识,知道试题的整体分布。针对以上的学情,笔者以为从四个方面,加以突破,提升学生的能力,以期在高考中取得好的成绩。
一、整合教材,建构体系
学生头脑里,已经有离散的基本知识和方法,教师要带领学生从几个角度实现知识的网络构建,把握知识的脉络。
一是:模块脉络:高中所学任意模块,教师要带领学生清晰的厘清,每一模块是如何生成和发展的,由哪些知识、哪些方法,通过何种方式呈现,何种方法生成,每一模块中章节之间的联系等等。这里以必修4为例,阐述笔者的观点。必修四由三章构成,第一章《三角函数》、第二章《平面向量》、第三章《三角恒等变换》。第一节引入任意角和弧度制,其中涉及重要的概念:终边相同的角、弧度制、角度制与弧度制之间的转化、扇形的面积公式;第二节在第一节基础上,建立了任意角的三角函数,通过点的坐标,单位圆建立,并且给出有向线段,正弦线、余弦线、正切线(这是建立后续三角公式、三角函数的图象的根源),后面的同角关系、诱导公式都是基于单位圆,第三节首先研究周期性(三角函数的本质特征,与其他函数的显著区别),在此基础上,研究了三角函数的图像(在三角函数线和周期性的基础上),研究了相关的性质(看图研究),注意三种图像的特征,以及与前面讨论函数的区别和联系。进而,研究函数y=Asin(ωx+φ)的图像和性质(通过研究与前面讨论的函数图像建立联系),最后研究三角函数的应用。(方法一:借助三角函数模型; 方法二:发现关系,建立函数关系式)。当然后面的第二章、第三章也可建立。最后还要讨论这三章之间的联系。只有这样,学生才非常清晰的把握课本知识点的发展、走向,以何种方式建立和联系的,学生零散在头脑中的知识点才能通过模块知识有机的连接起来。
二是:整体脉络:不同于模块脉络,整体脉络打破模块的限定,串联高中所有模块,针对某一主题,前后连接,使得脉络深入各个模块,使得学生从不同角度审视某一问题。下面我们以“函数”主题为例,阐述我的观点,常见的函数有哪些?各有什么特征和性质?是如何研究这些特征和性质的?有哪些应用?
初中研究的: 一次函数→反比例函数→二次函数
高中研究的:
必修1: 一次函数→指数函数→对数函数→幂函数
必修2、选修2-1: 直线→圆、圆锥曲线(在一定条件下)
必修3、选修2-3: 概率
必修4: 三角函数
必修5: 数列
选修2-2: 导数及其应用
选修4-2:矩阵的变换(变换的定义比函数的概念宽泛)
选修4-4: 参数方程、极坐标
其他一些重要的函数,比如: 分段函数、绝对值函数、双钩函数、三次函数、隐函数。
通过函数这一概念把高中许多问题、知识串联起来,让学生很清楚、很深刻的把握,同时提炼学生看透问题的本质。当学生遇到问题,可以从函数的观点审视问题,进而解决问题。三是:微观脉络:更多从某一知识点你可以联想到什么,某一方法主要应用体现在哪里。通过发散的思维,培养学生触类旁通的能力。比如“数量积”这一概念,你会想到什么(可以从概念是怎么来的,如何定义的,背景是什么,有哪些应用,用了哪些方法,涉及哪些知识,可以解决哪些问题)?从这一简单的概念,进行发散思维,使得学生可以充分调动各方面的知识和方法,聚焦这一概念,有利于学生思维稳定性的培养。
二、聚焦例题,融通内化
每年的高考题中,有百分之八十来自课本题及课本变题。(江苏省高中数学教研员李善良曾说。)另外,每年各地模拟题也涌现大量的好题,如何充分有效的用好课本题、模拟题是值得思考的。笔者以为在目前学生已掌握大量题的基础上,梳理、归纳、总结、提炼是提升的关键所在,实现量变到质变的飞跃,不但是知识、方法的提炼。而且还要在典型题目、常见问题上提炼。提炼出基本的经典题模型、基本的经典题解法模型,有助于学生更深刻把握某一类问题,解决某部分问题的常见思路和解题方法,使得学生在解题,尤其在解高考题,更便捷的采用摸式识别的方法解题。笛卡尔经典名言:所有的问题转化为数学问题,所有的数学问题转化为代数问题,所有的代数问题转化为方程问题。如果我们把某一部分的问题,能提炼浓缩速成一个模型,那该多好啊。
三、亲近真题,经历体验
各地的高考题都是经过专家反复斟酌、推敲的精品。历年的高考题中涌现大量的经典之作。研究高考真题,是考前30天提升效率的又一法宝。下面我给出研究的几个维度:
维度一:宏观把握
维度二:微观推敲
维度三:他山之石
四、优化指导,凸显自主
有人说,高考百分之七十考心理,百分之三十考知识。我非常认同这句话。高考是综合实力的竞争,某种意义上,应试策略比知识更重要。如何有效的提高学生的应试能力,是高考前的又一重要的关注点。从下面几个方面关注:
第一:引导学生从自己的考试经验总结,从同伴的失败和成功处总结。
第二:通过真题的模拟,使学生体验考试策略的重要性,以及遇到问题如何调整。
第三:有计划、有目的的开展应试辅导,通过对整个考试流程的分解,实现考试指导的针对性。
当然还有其他一些细节的考虑,有利于促进学生的正常发挥。
高考是一个系统工程,笔者只是针对考前30天这一特定的时间段(当然也是重要的时间段)加以思考,引导教师从四个关注点,全面提升学生各方面的能力,以期在高考中取得辉煌。但由于笔者的水平有限,考虑仍有不全面,不当之处,不吝指教。
高考的重要性不言而喻,牵动着千万家庭。如何有效地备考,如何在最后三十天,有较高的提升,这是摆在每位家长、学生、教师面前的一大难题,本文试图从四个方面讨论此问题,不足之处,恳请批评指正。
首先,我们有必要了解学生目前的情况,学生经过一年的总复习,经历了一轮、二轮复习,学生已经掌握了什么,还需要什么,与高考的要求还有什么差距?针对差距和问题,如何在30天内,开展针对性的突破。
学生的情况(对于大部分学生)是会做一些题目,一些常见的题目,并且见识了大量的题目,但有些并非会做,或者没有深刻的认识,并且认识是离散的、不系统的。对于课本的基本知识、基本方法有了解,基本知道,但还可能存在小漏洞。好一点的学生可能,储存的题目多一些,基本知识掌握牢固点;差一点的学生可能少一些。还有在多次的模拟考试和综合练习,学生基本已经找到自己的位置。以及在多次的考试中,总结了一些考试的方法和策略,但可能不全面。还有对高考试题的分布有认识,知道试题的整体分布。针对以上的学情,笔者以为从四个方面,加以突破,提升学生的能力,以期在高考中取得好的成绩。
一、整合教材,建构体系
学生头脑里,已经有离散的基本知识和方法,教师要带领学生从几个角度实现知识的网络构建,把握知识的脉络。
一是:模块脉络:高中所学任意模块,教师要带领学生清晰的厘清,每一模块是如何生成和发展的,由哪些知识、哪些方法,通过何种方式呈现,何种方法生成,每一模块中章节之间的联系等等。这里以必修4为例,阐述笔者的观点。必修四由三章构成,第一章《三角函数》、第二章《平面向量》、第三章《三角恒等变换》。第一节引入任意角和弧度制,其中涉及重要的概念:终边相同的角、弧度制、角度制与弧度制之间的转化、扇形的面积公式;第二节在第一节基础上,建立了任意角的三角函数,通过点的坐标,单位圆建立,并且给出有向线段,正弦线、余弦线、正切线(这是建立后续三角公式、三角函数的图象的根源),后面的同角关系、诱导公式都是基于单位圆,第三节首先研究周期性(三角函数的本质特征,与其他函数的显著区别),在此基础上,研究了三角函数的图像(在三角函数线和周期性的基础上),研究了相关的性质(看图研究),注意三种图像的特征,以及与前面讨论函数的区别和联系。进而,研究函数y=Asin(ωx+φ)的图像和性质(通过研究与前面讨论的函数图像建立联系),最后研究三角函数的应用。(方法一:借助三角函数模型; 方法二:发现关系,建立函数关系式)。当然后面的第二章、第三章也可建立。最后还要讨论这三章之间的联系。只有这样,学生才非常清晰的把握课本知识点的发展、走向,以何种方式建立和联系的,学生零散在头脑中的知识点才能通过模块知识有机的连接起来。
二是:整体脉络:不同于模块脉络,整体脉络打破模块的限定,串联高中所有模块,针对某一主题,前后连接,使得脉络深入各个模块,使得学生从不同角度审视某一问题。下面我们以“函数”主题为例,阐述我的观点,常见的函数有哪些?各有什么特征和性质?是如何研究这些特征和性质的?有哪些应用?
初中研究的: 一次函数→反比例函数→二次函数
高中研究的:
必修1: 一次函数→指数函数→对数函数→幂函数
必修2、选修2-1: 直线→圆、圆锥曲线(在一定条件下)
必修3、选修2-3: 概率
必修4: 三角函数
必修5: 数列
选修2-2: 导数及其应用
选修4-2:矩阵的变换(变换的定义比函数的概念宽泛)
选修4-4: 参数方程、极坐标
其他一些重要的函数,比如: 分段函数、绝对值函数、双钩函数、三次函数、隐函数。
通过函数这一概念把高中许多问题、知识串联起来,让学生很清楚、很深刻的把握,同时提炼学生看透问题的本质。当学生遇到问题,可以从函数的观点审视问题,进而解决问题。三是:微观脉络:更多从某一知识点你可以联想到什么,某一方法主要应用体现在哪里。通过发散的思维,培养学生触类旁通的能力。比如“数量积”这一概念,你会想到什么(可以从概念是怎么来的,如何定义的,背景是什么,有哪些应用,用了哪些方法,涉及哪些知识,可以解决哪些问题)?从这一简单的概念,进行发散思维,使得学生可以充分调动各方面的知识和方法,聚焦这一概念,有利于学生思维稳定性的培养。
二、聚焦例题,融通内化
每年的高考题中,有百分之八十来自课本题及课本变题。(江苏省高中数学教研员李善良曾说。)另外,每年各地模拟题也涌现大量的好题,如何充分有效的用好课本题、模拟题是值得思考的。笔者以为在目前学生已掌握大量题的基础上,梳理、归纳、总结、提炼是提升的关键所在,实现量变到质变的飞跃,不但是知识、方法的提炼。而且还要在典型题目、常见问题上提炼。提炼出基本的经典题模型、基本的经典题解法模型,有助于学生更深刻把握某一类问题,解决某部分问题的常见思路和解题方法,使得学生在解题,尤其在解高考题,更便捷的采用摸式识别的方法解题。笛卡尔经典名言:所有的问题转化为数学问题,所有的数学问题转化为代数问题,所有的代数问题转化为方程问题。如果我们把某一部分的问题,能提炼浓缩速成一个模型,那该多好啊。
三、亲近真题,经历体验
各地的高考题都是经过专家反复斟酌、推敲的精品。历年的高考题中涌现大量的经典之作。研究高考真题,是考前30天提升效率的又一法宝。下面我给出研究的几个维度:
维度一:宏观把握
维度二:微观推敲
维度三:他山之石
四、优化指导,凸显自主
有人说,高考百分之七十考心理,百分之三十考知识。我非常认同这句话。高考是综合实力的竞争,某种意义上,应试策略比知识更重要。如何有效的提高学生的应试能力,是高考前的又一重要的关注点。从下面几个方面关注:
第一:引导学生从自己的考试经验总结,从同伴的失败和成功处总结。
第二:通过真题的模拟,使学生体验考试策略的重要性,以及遇到问题如何调整。
第三:有计划、有目的的开展应试辅导,通过对整个考试流程的分解,实现考试指导的针对性。
当然还有其他一些细节的考虑,有利于促进学生的正常发挥。
高考是一个系统工程,笔者只是针对考前30天这一特定的时间段(当然也是重要的时间段)加以思考,引导教师从四个关注点,全面提升学生各方面的能力,以期在高考中取得辉煌。但由于笔者的水平有限,考虑仍有不全面,不当之处,不吝指教。