论文部分内容阅读
A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine(MPDA) and trimesoyl chloride(TMC) using PVC hollow fiber membrane as supporting.A series of PVC nanofiltration membranes with different molecular weight cutoff(MWCO) can be obtained by controlling preparation conditions.Chemical and morphological characterization of the membrane surface was carried out by FTIR-ATR and SEM.MWCO was characterized by filtration experiments.The preparation conditions were investigated in detail.At the optimized conditions(40 min air-dried time,aqueous phase containing 0.5% MPDA,0.05% SDS and 0.6% acid absorbent,oil phase containing 0.3% TMC,and 1 min reaction time),under 0.3 MPa,water flux of the gained nanofiltration membrane reaches 17.8 L/m2·h,and the rejection rates of methyl orange and MgSO4 are more than 90% and 60%,respectively.
A low operating pressure nanofiltration membrane is prepared by interfacial polymerization between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC) using PVC hollow fiber membrane as supporting. A series of PVC nanofiltration membranes with different molecular weight cutoff (MWCO) can be obtained by controlling preparation conditions. Chemical and morphological characterization of the membrane surface was carried out by FTIR-ATR and SEM. MWCO was characterized by filtration experiments. The preparation conditions were investigated in detail. At the optimized conditions (40 min air-dried time, aqueous phase containing 0.5% MPDA, 0.05% SDS and 0.6% acid absorbent, oil phase containing 0.3% TMC, and 1 min reaction time), under 0.3 MPa, water flux of the gained nanofiltration membrane reaches 17.8 L / rejection rates of methyl orange and magnesium sulfate are more than 90% and 60% respectively.