【摘 要】
:
2019年高考数学北京卷理科第20题是一道突出数学本质、关注学生会学数学能力的创新题.数学试验和猜想是数学研究的基本方式,也是积累数学活动经验的重要途径.通过详细分析此题,兼谈数学试验与猜想在数学探究中的具体应用.
论文部分内容阅读
2019年高考数学北京卷理科第20题是一道突出数学本质、关注学生会学数学能力的创新题.数学试验和猜想是数学研究的基本方式,也是积累数学活动经验的重要途径.通过详细分析此题,兼谈数学试验与猜想在数学探究中的具体应用.
其他文献
结合有限时间共识算法及一阶加速算法重球法提出分布式有限时间重球法.本算法的优点为可以保证所有节点在每个周期都达到共识,同时达到与集中式重球法相同阶数的收敛速率.通过数值仿真将该算法与其他分布式优化算法应用于机器学习问题上,展现了该算法的优良性能.
以平面向量数量积为研究载体,探讨了数学运算的四个水平——理解、运用、综合、创新.这些运算水平可以从运算的种类、情境和方法三个方面分析特征.运算水平的提升,主要受结构的复杂性、情境的动态性、表征的抽象性、元素的多样性等因素影响.教学中,要“根据不同要求,开展不同水平教学;落实算理教学,提升运算设计能力;加强推理培养,提升运算求解能力”,从而有效提升学生的数学运算素养.
针对无人机自组网等高动态飞行自组织网络中,网络拓扑的快速变化导致通信链路断裂和路由重建频繁的问题,研究一种基于Q-learning的QoS(quality of service)路由方法.该方法以Q-learning强化学习框架为基础,将邻居节点数量、链路持续时间和链路可用带宽作为路由度量信息,设计一种提供QoS保证的Q-learning奖励函数.网络节点通过广播Hello消息交互各自的本地路由度量信息,邻居节点接收到Hello分组或者数据分组,根据奖励函数计算并更新Q值,待转发数据分组的节点根据其维护的
针对在遥感大数据时代背景下,传统变化检测方法的精度和自动化程度难以满足实际应用需求,提出一种联合光谱特征、对象特征和时间特征的遥感影像变化检测方法.在提取遥感影像多种特征的基础上,利用双向长短期记忆网络,提取光谱-对象-时间特征,实现双时相影像变化信息的有效提取.基于双时相中分辨率遥感影像的实验结果表明:本方法的总体精度超过0.9,Kappa系数达到0.84.相较于传统的变化检测方法,可以有效提高变化检测的精度和自动化程度.
以2020年和2021年高考数学全国新高考Ⅰ卷为例,基于课程标准学业质量测评框架,分析新高考试题与课程标准的一致性程度及命题特征.研究发现,素养指向下两年全国新高考Ⅰ卷与《普通高中数学课程标准(2017年版)》在一定程度上具有一致性,试题素养测查水平逐年趋近于课程标准中学业质量水平二的要求;但各素养皆缺失“交流与反思”方面测查,且存在素养测评不均衡、整体性不足等现象.为有效促进教、学、评一体化衔接,发挥育人合力,建议在测评及日常教学中,加强真实情境与问题的有机融合,强化数学交流与反思,以实现素养的综合性要
组合数学中的拉姆齐定理探讨了有序和无序之间的关系,是广义的“抽屉原理”.从思维内容、思维特性、思维过程和思维策略等方面剖析“抽屉原理”的思维结构,得出“抽屉原理”反映无序中蕴含有序;体现从不确定性中寻找确定性因素,体现逻辑思辨性和批判性思维能力;“抽屉原理”的思维方法蕴涵以分求和的思想;“抽屉原理”的核心是运用逻辑分类构造“抽屉”.这样的数学思维特点蕴含数学思维的相似性特质,引导学习主体在实践尝试中将思维形式进行推广、引申与应用,实现知识的迁移,并不断完善学习主体的数学认知结构,这正是思维方法的教育价值.
在数学中,求解、证明的过程离不开推理,它贯穿于高中数学学习的始终,在知识体系的构建、能力的提升、核心素养的落实及知识之间的联系等方面发挥着重要的作用.以“平面向量及其应用”为例阐释了推理之间的联系及其应用的广泛性.
文章创设适切的问题情境,引导学生思考数学内容的本质,对等式的基本性质进行梳理,归纳其中蕴涵的数学思想方法,开展对不等式基本性质和常用性质的探究.在教学中,注重思想方法的渗透和活动经验的积累,培养学生的数学理性思维,落实“四基”.
通过分析2021年高考数学全国新高考Ⅱ卷第21题解答中体现的思维灵活性和方法综合性,探索试题的内涵与外延,给出相应备考建议.
先界定好的数学问题,再以2020年高考数学全国Ⅰ卷理科第20题为例,研讨结构化教学观点下的数学问题探究教学,形成了教学范式——探究教学的五个基本环节,最后进行了问题探究教学的优越性分析.