论文部分内容阅读
针对数据竞争算法采用欧式距离计算相似度、人为指定聚类簇数以及聚类中心无法准确自动确定等问题,提出了一种自动确定聚类中心的数据竞争聚类算法。引入了数据场的概念,使得计算出的势值更加符合数据集的真实分布;同时,结合数据点的势能与局部最小距离形成决策图完成聚类中心点的自动确定;根据近邻原则完成聚类。在人工以及真实数据集上的实验效果表明,提出的算法较原数据竞争算法具有更好的聚类性能。