论文部分内容阅读
摘 要 思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既能提高学生的发散思维能力,又能提高教学质量。如何培养学生的发散思维能力,找到培养和发展学生的能力的有效途径,在数学教学中愈来愈显得重要。
关键词 数学教学;发散思维;能力;培养
中图分类号:G622 文献标识码:A 文章编号:1002-7661(2018)24-0231-01
发散性思维是一种推测、发散、想象和创造的思维过程。具有思维的积极性、求异性、广阔性、联想性等特性。数学教学的过程,和语文以及其他专业的语言学科不同,在课堂上,教师扮演着至关重要的作用,教师的引导、质疑、操作都直接带动着学生的思考。数学教学过程中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又能提高小学数学教学质量。
一、训练自己思维的积极性
思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维极其重要的基础。例如:在一年级《乘法初步认识》一课中,可先出示几道连加算式改写为乘法算式。而后,出示3 3 3 3 2,思考、讨论能否改寫成一道含有乘法的算式呢?如3 3 3 3 2=3×5-1=3×4 2=2×7……费时多,但这样的训练却有效地激发了寻求新方法的积极情绪。在学习中还可经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等教学方法,以激发学生对新知识、新方法的探知思维活动,这有利于激发自己的学习动机和求知欲。
二、转换角度思考,训练思维的求异性
从认知心理学的角度来看,在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展自己的抽象思维能力,必须十分注意培养思维求异性。例如,四则运算之间是有其内在联系的:减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止地看问题,使所学知识有所升华,又进行了求异性思维训练。我们习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。
三、一题多解、变式引伸,训练思维的广阔性
思维的广阔性是发散思维的又一特征。反复进行一题多解、一题多变的训练,是帮助克服思维狭窄性的有效办法。可通过讨论,启迪思维,开拓解题思路,在此基础上通过多次训练,既增长了知识,又培养了思维能力。
四、转化思想,训练思维的联想性
联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,思维可达到一定广度,而通过联想思维的训练,思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。在进行多种解题思路的讨论时,有的解法需要用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在应用题解题中,用转化方法,迁移深化,由此及彼,有利于联想思维的训练。
参考文献:
[1]于莉.谈如何培养学生的数学发散性思维[J].廊坊师范学院学报(自然科学版),2008,8(3):41-42.
[2]林婉萍.谈谈在数学教学中如何培养学生的发散思维[J].才智,2011(15):46.
[3]符琴燕.如何培养小学生数学的发散思维能力[J].考试周刊,2008(9):41.
关键词 数学教学;发散思维;能力;培养
中图分类号:G622 文献标识码:A 文章编号:1002-7661(2018)24-0231-01
发散性思维是一种推测、发散、想象和创造的思维过程。具有思维的积极性、求异性、广阔性、联想性等特性。数学教学的过程,和语文以及其他专业的语言学科不同,在课堂上,教师扮演着至关重要的作用,教师的引导、质疑、操作都直接带动着学生的思考。数学教学过程中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又能提高小学数学教学质量。
一、训练自己思维的积极性
思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维极其重要的基础。例如:在一年级《乘法初步认识》一课中,可先出示几道连加算式改写为乘法算式。而后,出示3 3 3 3 2,思考、讨论能否改寫成一道含有乘法的算式呢?如3 3 3 3 2=3×5-1=3×4 2=2×7……费时多,但这样的训练却有效地激发了寻求新方法的积极情绪。在学习中还可经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等教学方法,以激发学生对新知识、新方法的探知思维活动,这有利于激发自己的学习动机和求知欲。
二、转换角度思考,训练思维的求异性
从认知心理学的角度来看,在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说个体(乃至于群体)的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展自己的抽象思维能力,必须十分注意培养思维求异性。例如,四则运算之间是有其内在联系的:减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止地看问题,使所学知识有所升华,又进行了求异性思维训练。我们习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。
三、一题多解、变式引伸,训练思维的广阔性
思维的广阔性是发散思维的又一特征。反复进行一题多解、一题多变的训练,是帮助克服思维狭窄性的有效办法。可通过讨论,启迪思维,开拓解题思路,在此基础上通过多次训练,既增长了知识,又培养了思维能力。
四、转化思想,训练思维的联想性
联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,思维可达到一定广度,而通过联想思维的训练,思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。在进行多种解题思路的讨论时,有的解法需要用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在应用题解题中,用转化方法,迁移深化,由此及彼,有利于联想思维的训练。
参考文献:
[1]于莉.谈如何培养学生的数学发散性思维[J].廊坊师范学院学报(自然科学版),2008,8(3):41-42.
[2]林婉萍.谈谈在数学教学中如何培养学生的发散思维[J].才智,2011(15):46.
[3]符琴燕.如何培养小学生数学的发散思维能力[J].考试周刊,2008(9):41.