半监督集成学习综述

来源 :计算机科学 | 被引量 : 0次 | 上传用户:zhangxizi
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半监督学习和集成学习是目前机器学习领域中两个非常重要的研究方向,半监督学习注重利用有标记样本与无标记样本来获得高性能分类器,而集成学习旨在利用多个学习器进行集成以提升弱学习器的精度。半监督集成学习是将半监督学习和集成学习进行组合来提升分类器泛化性能的机器学习新方法。首先,在分析半监督集成学习发展过程的基础上,发现半监督集成学习起源于基于分歧的半监督学习方法;然后,综合分析现有半监督集成学习方法,将其分为基于半监督的集成学习与基于集成的半监督学习两大类,并对主要的半监督集成方法进行了介绍;最后,对现有研究进了总结,并讨论了未来值得研究的问题。
其他文献
高能物理是典型的数据密集型计算环境,数据处理包括模拟计算、重建计算以及物理分析。其中大文件计算占据较大比重,并且高能物理文件访问模式以跳读为主,因此大文件的高速访
Halo-based Galaxy Group Finder(HGGF)是一种有效的星系分组算法,它根据星系的空间位置、红移、质量等多种属性将星系分组,从而为星系组的形成与演化研究提供重要依据。但是,
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Diffe
针对概念分解算法没有同时考虑数据空间和特征属性空间中的高阶几何结构信息的问题,提出了一种基于对偶超图正则化的概念分解算法。该算法通过分别在数据空间和特征属性空间中构建无向加权的拉普拉斯超图正则项,分别反映了数据流形和特征流形的多元几何结构信息,弥补了传统图模型只能表达数据间成对关系的缺陷。采用交替迭代的方法求解算法的目标函数并证明了算法的收敛性。在3个真实数据库(TDT2、PIE、COIL20)上
知识约简可以保持决策系统中的分类特征不变,是粗糙集理论的重要研究内容之一。分布约简保持约简前后决策系统中各规则的置信度不发生改变。为了给区间值决策系统的论域分类
分析了Altera公司嵌入式Nios微处理器的基本特点,介绍了基于Altera Nios平台的鱼雷电源组件自动检测系统的设计与实现,详细地讨论了片上系统各个组成部分的工作原理,作为一个
针对CRH2型动车组列车网络流量数据日益复杂的特性,提出了一种将主成分分析法(PCA)与后馈神经网络(BP网络)相结合的网络流量建模预测思路。基于已搭建好的CRH2型列车通信仿真平台
跨语言命名实体对于机器翻译、跨语言信息抽取都具有重要意义,从命名实体的音译、基于平行/可比语料库的跨语言命名实体对齐、基于网络挖掘的跨语言命名实体对翻译抽取3个方
针对图像中的椒盐噪声消除问题,提出了一种基于粒子群算法的自适应开关中值滤波算法。提出的滤波器算法主要由两大阶段组成:噪声检测阶段和噪声滤除阶段。与标准中值滤波相比,提出的自适应开关中值滤波算法能够生成污染图像的噪波图。通过噪波图可以得到图像的污染和未污染像素信息。在滤除过程中,滤波器计算出未污染相邻像素的中值并且替换污染像素。仿真实验结果证实了所提算法的有效性,其能够有效地提高图像的峰值信噪比和图