论文部分内容阅读
一个图G的路分解是指一路集合使得G的每条边恰好出现在其中一条路上.记Pl长度为l-1的路,如果G能够分解成若干个Pl,则称G存在{Pl}——分解,关于图的给定长路分解问题主要结果有:(i)连通图G存在{P3}-分解当且仅当G有偶数条边(见[1]);(ii)连通图G存在{P3,P4}-分解当且仅当G不是C3和奇树,这里C3的长度为3的圈而奇树是所有顶点皆度数为奇数的树(见[3]).本文讨论了3正则图的{P4}--分解情况,并构造证明了边数为3k(k∈Z且k≥2)的完全图Kn和完全二部图Kr,s存在{P4}-