论文部分内容阅读
我们所有的人收教育的主要地方就是教室,而课堂是师生“对话的场所”,学生是数学学习的主人,数学教学主要是交流合作.教师和全班学生互动讨论,也是一种师生交流合作地学习.但数学是个人思考的学科,教师所提的问题要能引起学生的主动思维、独立思考,才能促使高质量的师生的互动.那么教师怎样提问呢?在学生思维的“最近发展区”内提问题,也就是在知识形成过程的“关键点”上,或在解题策略的“关节点”上,或在知识间联系的“联结点”上,或在数学问题变式的“发散点”上提问.好的提问就是“导而弗牵,强而弗抑,开而弗达”. 另外课堂上的分组讨论也是合作学习的一种方式.由于思考需要比较长的时间,而没有经过充分的独立思考,表面热闹的合作学习是形式上合作,是没有意义,也没有实效的.要提高合作学习实效,需要课堂内外合作结合,教师还必须正确面对合作中是主动参与还是被动参与,是平等还是独裁,是独立思考还是照抄别人等问题,及时地给予指导,把内容和要求交代清楚.《数学课程标准》强调数学与现实生活的联系,要求选材必须贴近学生生活实际,要求数学教学必须从学生熟悉的生活情境出发,引导学生从现实生活中学习数学、理解数学、体会数学,感受数学的趣味和作用,体验数学的魅力.
如在《数学(必修2)》直线的倾斜角与斜率的学习时,为了加强对斜率的意义和作用的理解,教师布置学生课前阅读并思考《魔术师的地毯》问题,把想法在组内讨论,然后选出一人在课堂上交流思辩.这样有了课前充分的独立思考与合作,课堂上的交流合作就能节省时间,又能深刻理解交流问题的实质,因此提高课堂效率和合作效果. 新课程提出教师的教要“以学生的学为中心”,教师是课堂“舞台”上的“导演”,是学习数学的组织者、引导者与合作者,而培养理性思维能力是数学教育的主要目标.但学生的日常经验还不能支撑全部数学,因此数学教学要把隐藏在背后的理性思考激活,要把数学的文化价值点穿,帮助学生体会“蓦然回首,那人却在灯火阑珊处”的数学解题意境,学生才会喜欢数学.
每一堂课都有规定的教学任务和目标要求.所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法.数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识.而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论.如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度.这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明.此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法.在一堂课上,有时要同时使用多种教学方法.“教无定法,贵要得法”.只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法.
高中新课程的宗旨是着眼于学生的发展.对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学.在教学过程中,教师要随时了解学的对所讲内容的掌握情况.如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演.有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学.
学生是学习的主体,教师要围绕着学生展开教学.在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人.在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们.这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成.学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来.
众所周知,近年来高考数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学.教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生.其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理.结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化.如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误.不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低.可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养.
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等.这些基本思想和方法分散地渗透在中学数学教材的条章节之中.在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法和通性通法,从而达到传授知识,培养能力的目的,只有这样.学生才能灵活运用和综合运用所学的知识.
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,教师就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用.著名数学教育家波利亚说:“聪明的人从结果开始”.通过对结果的反思,就能发现和纠正运算中失误之处,或对解题合理性进行检验,找到症结所在,然后作出适当的补充和调整.
如在《数学(必修2)》直线的倾斜角与斜率的学习时,为了加强对斜率的意义和作用的理解,教师布置学生课前阅读并思考《魔术师的地毯》问题,把想法在组内讨论,然后选出一人在课堂上交流思辩.这样有了课前充分的独立思考与合作,课堂上的交流合作就能节省时间,又能深刻理解交流问题的实质,因此提高课堂效率和合作效果. 新课程提出教师的教要“以学生的学为中心”,教师是课堂“舞台”上的“导演”,是学习数学的组织者、引导者与合作者,而培养理性思维能力是数学教育的主要目标.但学生的日常经验还不能支撑全部数学,因此数学教学要把隐藏在背后的理性思考激活,要把数学的文化价值点穿,帮助学生体会“蓦然回首,那人却在灯火阑珊处”的数学解题意境,学生才会喜欢数学.
每一堂课都有规定的教学任务和目标要求.所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法.数学教学的方法很多,对于新授课,我们往往采用讲授法来向学生传授新知识.而在立体几何中,我们还时常穿插演示法,来向学生展示几何模型,或者验证几何结论.如在教授立体几何之前,要求学生每人用铅丝做一个立方体的几何模型,观察其各条棱之间的相对位置关系,各条棱与正方体对角线之间、各个侧面的对角线之间所形成的角度.这样在讲授空间两条直线之间的位置关系时,就可以通过这些几何模型,直观地加以说明.此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法.在一堂课上,有时要同时使用多种教学方法.“教无定法,贵要得法”.只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的掌握和运用,都是好的教学方法.
高中新课程的宗旨是着眼于学生的发展.对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学.在教学过程中,教师要随时了解学的对所讲内容的掌握情况.如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演.有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学.
学生是学习的主体,教师要围绕着学生展开教学.在教学过程中,自始至终让学生唱主角,使学生变被动学习为主动学习,让学生成为学习的主人,教师成为学习的领路人.在一堂课中,教师尽量少讲,让学生多动手,动脑操作,刚毕业那会,每次上课,看到学生一道题目往往要思考很久才能探究出答案,我就有点心急,每次都忍不住在他们即将做出答案的时候将方法告诉他们.这样容易造成学生对老师的依赖,不利于培养学生独立思考的能力和新方法的形成.学生的思维本身就是一个资源库,学生往往会想出我意想不到的好方法来.
众所周知,近年来高考数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学.教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生.其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理.结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化.如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误.不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低.可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养.
常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等.这些基本思想和方法分散地渗透在中学数学教材的条章节之中.在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法和通性通法,从而达到传授知识,培养能力的目的,只有这样.学生才能灵活运用和综合运用所学的知识.
总之,在新课程背景下的数学课堂教学中,要提高学生在课堂40分钟的学习效率,要提高教学质量,教师就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用.著名数学教育家波利亚说:“聪明的人从结果开始”.通过对结果的反思,就能发现和纠正运算中失误之处,或对解题合理性进行检验,找到症结所在,然后作出适当的补充和调整.