论文部分内容阅读
The soil plug phenomenon involving the rising of the surface soil inside the bucket chamber under the suction pressure and seepage forces was simulated and calculated by deformable discrete element method (DDEM) models. The seepage forces, the effective gravity of soil, the friction on the chamber wall and the suction inside the chamber are considered as the main external forces of DDEM specimen. Three typical types of soil (silty clay, silt and sand) in the Bohai Sea are set as the main environmental conditions in the formation process of soil plug. It is found that the heights of soil plug simulated by DDEM models are 161.85 mm in silty clay, 125.22 mm in silt and 167.56 mm in sand, which are close to model test results and higher than those estimated by discrete element method (DEM). DDEM is an effective method to estimate and predict the heights of soil plug before suction penetration of bucket foundations on site.
The soil plug method involving the rising of the surface soil inside the bucket chamber under the suction pressure and seepage forces was simulated and calculated by deformable discrete element method (DDEM) models. The seepage forces, the effective gravity of soil, the friction on the chamber wall and the suction inside the chamber are considered as the main external forces of DDEM specimen. Three typical types of soil (silty clay, silt and sand) in the Bohai Sea are set as the main environmental conditions in the formation process of soil plug It is found that the heights of soil plug simulated by DDEM models are 161.85 mm in silty clay, 125.22 mm in silt and 167.56 mm in sand, which are close to model test results and higher than those estimated by discrete element method (DEM) DDEM is an effective method to estimate and predict the heights of soil plug before suction penetration of bucket foundations on site.