靶弹任务规划与虚拟训练技术研究

来源 :测试技术学报 | 被引量 : 0次 | 上传用户:a5477011266
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着军事智能化发展速度的加快,传统的作战训练急需采用智能化技术进行任务规划以及虚拟作战仿真.本文基于便携式安卓设备,开发了高速靶弹供靶任务规划软件,采用JNI技术实现了弹道和射表快速解算,通过OSMDroid实现了供靶点、落点及发射方位等参数的图形化显示,基于VR-Forces构建了具有良好视觉沉浸感和交互性的靶弹虚拟仿真系统,用于任务规划结果的仿真与评估.使用结果表明:该系统可以方便高效地完成任务规划及仿真,提高了靶弹训练效率.
其他文献
为充分挖掘和利用透射率估计及图像去雾过程中捕获信息的相关性,提出了双视觉注意网络的联合图像去雾和透射率估计算法。它包括图像去雾层及透射率估计层,且各层均包含循环注意网络及编码解码网络。图像去雾层在透射率图的监督下,由循环注意网络生成雾浓度注意图,并引导后续的编码解码网络估计去雾结果。透射率估计层在真实无雾图像的监督下,由循环注意网络生成场景注意图,并引导后续的编码解码网络估计透射率。在此基础上,进
海面船舶目标检测一直是遥感图像处理、模式识别与计算机视觉等领域的研究热点,船舶作为海上运输载体和重要军事目标,对其进行自动检测在军用与民用领域有着广阔的应用前景和重要现实意义。本文梳理了用于海面船舶目标检测的光学成像卫星的发展情况,分析了光学遥感成像船舶目标的物理特性和特征,归纳了国内外该领域海面船舶检测技术研究现状,围绕构建相关目标检测模型和架构的相关理论与关键技术进行了分析、比较和总结,探讨了
为了提高图像理解(Image Captioning)的预测性能,设计了一种基于"融合门"的深度神经网络模型。该"融合门"网络模型基于编码器-解码器结构设计,是卷积神经网络与循环神经网络的融合。算法首先将输入图像通过VGGNet-16网络进行卷积,得到对应的4096维输出向量,然后将卷积后的输出向量与标注语句向量合并,作为输入向量进入改进后的"融合门"网络,最后获得新的网络输出结果。上述过程按照时间
为了实现对驾驶员的驾驶姿态估计,采集并构建了包含26名驾驶人员的姿态估计数据集,提出了一种轻量型卷积神经网络,用于对驾驶姿态的高效识别。首先,通过数学建模将驾驶员的姿态识别问题转化为寻找损失函数最小时关节点的预测值置信图与真值置信图的映射函数。以Hourglass模块为每阶段的骨干结构,残差块为基本组成单元,使用批量归一化和激活函数,构建全卷积神经网络。为了利用原始图片信息和基础上下文信息,使用多
本文针对波前编码成像,单透镜计算成像等领域的全局一致模糊复原背景需求,提出了一种高效的基于区域选择网络的图像去模糊方法。与传统方法通过构建目标函数及各类先验信息实现模糊图像清晰化过程不同,本文方法则基于深度学习与传统方法的结合。传统方法负责图像复原的主体流程,深度学习方法则负责对传统方法中的关键步骤模糊核求取区域选择进行干预。基于深度学习的深度二元分类网络能够自动在全局图像中剔除平坦过曝、短小纹理
针对地面三维脉冲激光扫描仪传统自检校方法中参数高相关性制约参数估计可靠性的不足,基于最小二乘配置方法与全站仪误差模型,提出一种地面三维脉冲激光扫描仪自检校方法。该方法通过对估计参数配置相关先验权重信息柔性定义检校网基准,把所有参数都作为检校平差中的观测值实施处理,同时对检校网进行优化设计,并联合等价权鲁棒估计实施自检校粗差检验与方差分量估计,有效降低了参数估计间的相关性,提高了检校的可靠性。基于扫
针对DCE-MRI乳腺癌病变区的浸润范围勾画精度低、结构形态变化大、强度不均和边界对比度低等原因,导致乳腺癌病变区自动化分割存在准确率低和错分割的问题,为此,本文构建了一个二阶段乳腺癌病变区分割框架,提出一种乳腺癌病变区分割模型UTB-net,分别在编码路径和末端整合多尺度和Non-local,在解码路径构建注意力-残差模块。首先,利用基准U-net网络模型实现对乳房区域的粗糙勾画,消除影像中胸肌
嵌入式软件在雷达装备中发挥核心作用,采用传统的用户界面动态测试手段,难以实现充分的软件测试,易造成缺陷遗漏.本文针对基于接口仿真的软件测试技术展开研究,提出了适合于
为了提高非扫描式互相关解调系统的解调精度,通过分析非扫描式解调系统的信号特征,研究了一种基于高斯拟合的解调算法.该算法使用最大值寻峰算法解调出峰值位置,提取出峰值位
沙漠地区地震勘探数据中低频背景噪声与有效信号相互混叠,无论在哪个变化域都很难将信噪进行有效分离,大大降低了后续地震资料的质量.本文将小波神经网络应用于地震勘探低频