浅谈利用课堂提问提高课堂效率

来源 :考试周刊 | 被引量 : 0次 | 上传用户:luoqiaoshui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:课堂提问是数学教学环节中的重要环节之一,如何巧妙地对学生进行提问是作为教师一项基本的教学能力。经过教师认真设计、恰如其分的课堂提问,可以从多个维度激发学生的探究热情,培养孩子的想象力,极大地提升课堂教学效率。教师想要提高对学生课堂提问的教学能力,就要以备教材,熟悉学生为基础,以教授新知时把握重点为关键,以提问时注重形式多样为方式,对每一个课堂问题都要细细揣摩,这样学生的数学核心素养才能够得到体认,孩子的发现问题、解决问题的能力才能够得到提升。在这个过程中积极向上的学习态度,耐心、细致的学习习惯得到养成,课堂的教学效率稳步提高。
  关键词:兴趣;启发;反思;抓住关键
  课堂教学实践中,课堂提问是数学教学环节中的核心内容。因为一个好的提问,能够在激发孩子思维的源头活水,打开孩子表达的欲望闸门,进行思维训练的发动机,使学生畅所欲言。我们应该充分重视课堂提问,使之能真正促进课堂效率。教师的提问要问在点子上,启发到关键处。教师只有做到有效提问,才能收获高效的教学效果。基于此,有效提问就显得重要而迫切。
  一、 钻研教材,研究学生
  教学中想要提高课堂效率,进行高效的课堂提问,教师对教材的研究要深入,要达到“懂、透、化”的目标。教学内容一般包括:课程标准、课程计划、教学资料、课本和补充习题。教师要研究课程教学计划,掌握本学科的教育目标,明确教材的教学内容;要熟悉课本,掌握课本的基本脉络与知识体系,突出每个知识点核心(重难点),具有开阔的教学视野,兼收并蓄,多方参到考教学资源,充实课堂教学内容。只有做到这些,教师才能游刃有余地提出问题,引导学生分析问题,学生学会解决问题的方法,才能事半功倍,更大限度地提高教学质量。
  在吃透教材的同时,教师也要充分熟悉任教班级的学生。学生的原始认知水平是教学的起点,想让教学更好地为学生服务,教学活动应符合学生的实际情况。教师要从学生的基础知识、基本技能、思维特点、学习态度和个体特征等多方面地了解,最大限度采用因材施教的教学原则,最大限度地发展学生的智力和思维能力。
  二、 教授新知,把握重点
  “有效提问”是指:教师提出的问题,能引起师生的互动或共鸣,学生会更积极参与到学习活动中,从而获得更大发展。在教授新知识时,教师要善于从知识结构出发,把握知识重点。教师在课堂提问时要突出重点,分散难点,抓住关键。教师应努力鼓励学生提出疑问,自己寻找问题,对于学生来说,这是更高要求的训练。教师在设疑时,应想办法让学生在有疑问的基础上再产生疑问,接着引导他们去质疑、解疑。在这个教学训练过程中,孩子的数学核心素养——发现、分析、解决问题的能力都能够得到提高。
  在教学实践中,会有一种很有意思的情况发生。经常会在解决完问题后,问学生:“还有什么问题不会吗?”学生一般会不假思索地回答:“没有。”如果总是“没问题”,可能就真的“出现问题”了。每个人对一个数学问题的认知,都有不同的认知程度,肯定有高有低,有轻松掌握的,也有学得困难的。也就是说,不可能“没有问题”。教师要杜绝这种“没有问题”情况的发生,以此达到真正掌握重点。
  三、 课堂提问,形式多样
  有句话说,兴之所至其情兴也。孩子只有对老师的问题感兴趣了,才会积极去思考、深入地解决这个问题。同时,学习兴趣也是孩子学习得以持续延展的重要保证,可以激发孩子顽强的意志品质和钻研精神。因此,在课堂教学中采取多样的提问方式就显得很有意义,进而提高课堂效率就必须让课堂提问形式多样,让学生对所学知识表现出更多的求知欲望。如我在教授一年级新课“数一数”时,面对一年级小孩求知欲望强烈的现状,我除了采取传统的课堂提问外还采取了知识抢答的形式。我会说:“小朋友们,现在我们一起来玩一个知识小竞赛,看哪位小朋友能最快最好地将问题解决。”这样不仅改善了枯燥的课堂氛围,也激发了学生去解决问题的兴趣。学生对知识的理解也会更加深刻,课堂效率也会得到很大的提高。
  四、 寻求启发点,化疑解难
  把学生理解知识的疑难处,作为寻求提问的启发点,不仅能够及时帮助学生纠正错误,还能开启学生的心智,呈现出思维上面的不足,便于教师及时地调控和点拨学生的误区。在教学中,如果教师能够根据教学目标和学生实际情况,有的放矢地找出问题的“切入点”,在学生心里有想法但口头难以表达时进行设疑问难,就能更好地激发学生思维,收到事半功倍的效果。在教授三年级学生学习“三位数除以一位数,首位不够除”这节课时,这时学生已经学会了首位够除的方法,在此基础上学生距离教学目标的达成只差一点,此时我们就需要抓住关键,寻求提问的启发点进行提问。同时教师在提问时进行必要点拨疏通,铺路搭桥,充分发挥在课堂中的引导作用。对在课堂提问中回答不出的学生一定要给予适时的表扬,千万不能打击他们学习的积极性。
  五、 点燃信心,提升品質
  从心理学层面来考量,信心是对事情的发展演化的预估信任的情感过程。这种品质不但对学习数学有作用,而且对孩子形成良好的精神品质都具有重要的价值。要想数学课堂提问扎实有效,必须将问题纳入情感范畴思考。(1)给予方法激发学习情感。“授人以鱼,不如授人以渔”。方法只要掌握了,就能举一反三,触类旁通,从而形成良好的学习信心。确立自信心,对孩子形成良好的心理素质具有显著的意义。能够由内而外地激发学习的主动性,那么学习兴趣的形成就自然水到渠成了。(2)在学习过程中不可避免会遇到挫折。因此,教师也应该培养孩子不屈不挠的精神品质。这样不仅从认识上改变学生的认知,还能够更加有效地提高数学课堂的教学效率。
  总之,在数学课堂教学中,教师应该始终将自己的注意点集中在孩子身上,关照孩子的认知,结合现实的课堂实践,把握好提问时机,应用提问的技巧,优化提问内容,不断提高学生提问的能力,培养学生发现问题,提出问题,分析问题和解决问题的能力,只有这样才能真正提高课堂教学效率。
其他文献
摘要:复合型人才是目前国家最为需要的人才类型,它不仅要求人才具有熟练的专业知识,更要求人才具备创新能力与实践能力。实验教学似乎是理科课程的专利,但是文科同样拥有进行实验教学的权力,我国各个高校正在以创新实践能力作为基础,对文科实践教学体系进行构建,锻炼文科学生的能力,提升文科学生的综合素质,让我国文科学生具备相关能力,符合时代的要求。  关键词:创新实践能力;文科;实验教学;构建  一、 引言  
摘要:学生的安全教育问题是当前青少年学生活动中心安全教育的重要课题,安全和科学的锻炼能够使学生受益终生。本文将简要地分析当前青少年学生活动中心学生安全存在的问题,并提出相应的解决措施。  关键词:青少年活动中心;安全问题;解决措施  青少年学生是祖国的花朵,学生的安全教育一直是我国教育事业中的重点工作。因此,在青少年活动中心中,我们仍然要以“安全第一”作为指导思想,加强对青少年安全教育的研究,为他
摘要:本文以高职食品专业为典型的案例,结合这个专业的特色,融合人才培养的主要目标,探索在创新创业教育体系当中有关课程建设和平台搭建等环节,明确高职食品专业创新创业教育体系的重要性,促进创新创业教育体系在高职食品专业当中更好的利用,发挥出更大的作用。  关键词:高职;食品专业;创新创业教育体系  当前很多高职院校开始实施2 1的教学模式,本文针对高职食品专业的创业教育与体系的创新进行全面的思考,结合
摘要:在高职院校中,班级是其构成的最基本元素,辅导员管理着班级的日常各项事务。文章基于人文关怀的视角,从教育的立意与价值取向出发,尝试着对辅导员班级管理的思路进行大胆创新,旨在加强对高职学生进行素质培养,造就各方面全方面发展的复合型人才。  关键词:人文关怀;高职生;价值;教育  高职学生的数量近年来不断增加,大部分高职学生在思想上稍有欠缺,因此教师在教育教学中要能够灌输良好的素质教育知识,加强对
摘要:涵泳的方式能促使学生对古诗词进行整体、反复的体会,令学生获得对作品的深层次把握,触及古诗词的文化特质。在高中语文教学中指导学生进行多元涵泳需要注意以下几个方面:必须要促使学生在涵泳时心无旁骛,集中精神、心怀敬意地阅读;必须要促使学生在涵泳时进行多元思考,尝试对古诗词进行价值判断;必须让学生在涵泳时心情愉悦,促使他们滋养性情。  关键词:涵泳;古诗词;高中语文  古诗词是中华文化的瑰宝,虽历经
摘要:近年来,高考古典诗歌的考查越来越注重对诗歌本身的理解,语文教学虽然也相当注重学生对诗歌内容的解读,但收效甚微,阅读鉴赏依然是学生心头的一大难题,也是教学的重点难点。本文以多年高中语文教学实践为基础,结合了作者自己独特的阅读体验,摸索出了一套简单有效的读懂诗歌的方法,即首先要着力于培养学生的三种能力:翻译能力,联想和想象能力,融会贯通能力。  关键词:诗歌鉴赏;翻译;联想想象;融会贯通  古典
摘要:班主任是班级的管理者、策划者、组织者,对于班级的管理具有非常重要的影响和作用。尤其在近些年,安全日渐成为班级管理中非常重要的内容,班主任更加需要充分发挥自身作用,积极探索构建平安班级的措施和路径,避免安全责任事故的发生,为学生的健康发展构建良好环境。  关键词:初中班级;平安班级;班级管理;安全教育  班级是教育开展的重要单位,通过班级的科学、合理管理,能够促使学生更好地融入到班级建设中来,
摘要:本文主要介绍了求解特征根与特征向量的两种相关方法:列行互逆变换法和QR法。通过对n阶矩阵的特征根与特征向量的进一步研究,探讨出了矩阵特征根与特征向量在众多领域都有广泛的应用。  关键词:矩阵;特征根;特征向量;特征多项式  一、 矩阵特征根与特征向量的求解方法  1. 列行互逆变换法  列行互逆变换的三种变换方式:  (1) 互相交换两列的位置cicj,同时互相交换j,i两行(rirj);