基于双论域粗糙集的快捷货物运输方案选择

来源 :计算机应用 | 被引量 : 0次 | 上传用户:yangmingmind
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对多种不确定因素下的快捷货物运输方案决策问题,提出一种基于双论域直觉模糊粗糙集的快捷货物运输方案决策模型与决策规则。依据双论域直觉模糊粗糙集理论来确定快捷货物运输方案决策的双论域模糊近似空间。将固定成本、运输成本、转运成本、碳排放、转运时间等评价指标的消耗程度视为直觉模糊数,利用评价指标与运输方案之间的直觉模糊关系计算求得下近似集与上近似集,并引入最大直觉性指标及海明贴近度得出运输方案决策规则。以兰州至北京的一条快捷货物运输线路为例,依据决策规则从公路、普铁、航空组合出的9种运输方式中选择出最优运
其他文献
生成对抗网络(GAN)能够自动生成目标图像,对相似地块的建筑物排布生成具有重要意义。而目前训练模型的过程中存在生成图像精度不高、模式崩溃、模型训练效率太低的问题。针对这些问题,提出了一种面向图像生成的条件Wassertein生成对抗网络(C-WGAN)模型。首先,该模型需要识别真实样本和目标样本之间特征对应关系,然后,根据所识别出的特征对应关系进行目标样本的生成。模型采用Wassertein距离来
针对传统分形图像压缩中存在计算复杂度高以及编码时间较长的问题,提出了一种基于灰度共生矩阵纹理特征的正交化分形编码算法。首先,从特征提取和图像检索的角度建立起范围块和域块之间的相似性度量矩阵,由此将全局搜索转化为局域搜索来缩减码本;然后,定义一个新的规范块作为新的灰度描述特征,从而简化了块之间的变换过程;最后,引入同步正交匹配追踪(SOMP)稀疏分解正交化分形编码的概念,将块之间的灰度匹配转化为求解
人体行为识别是智能监控、人机交互、机器人等领域的一项重要的基础技术。图卷积神经网络(GCN)在基于骨骼的人体行为识别上取得了卓越的性能。不过GCN在人体行为识别研究中存在以下问题:1)人体骨架的骨骼点采用坐标表示,缺乏骨骼点的运动细节信息;2)在某些视频中,人体骨架的运动幅度太小导致关键骨骼点的表征信息不明显。针对上述问题,首先提出骨骼点的时序散度模型来描述骨骼点的运动状态,从而放大了不同人体行为
针对毫米波大规模多输入多输出(mm Wave Massive MIMO)系统硬件成本高、系统开销大等问题,提出一种基于改进智能水滴的正交匹配追踪(IWD-OMP)混合预编码算法。首先,基于正交匹配追踪(OMP)算法求解预编码矩阵;其次,采用改进的智能水滴(IWD)算法求解矩阵中全局最优的索引向量;最后,通过此方法求解的矩阵无须提前构造候选矩阵,可以达到节约系统资源、降低矩阵计算复杂度的目的。实验结
针对现有选择性映射(SLM)方法抑制滤波器组多载波(FBMC)信号峰均比(PAPR)的性能不佳及边信息错误率(SIER)高的问题,提出了一种边信息(SI)嵌入的SLM方法来抑制PAPR。在发送端,设计了一组嵌入SI的相位旋转矢量,并将相位旋转矢量同发送数据块相乘产生备选数据块;利用备选数据块的实部和虚部分量的逆离散傅里叶变换(IDFT)输出,设计了基于循环时移的候选FBMC信号,并选择具有最小PA
在集装箱海铁联运港口中,铁路作业区作为连接铁路运输和水路运输的重要节点,其装卸效率将影响集装箱海铁联运的整体效率。首先,对比分析了"船舶-列车"作业模式和"船舶-堆场-列车"作业模式的特点,并结合海铁联运港口实际作业情况提出了混合作业模式。然后,以轨道吊完工时间最短为目标构建混合整数规划模型,既考虑了班列和船舶的作业时间窗约束,又考虑了轨道吊间干扰和安全距离、轨道吊和集卡接续作业和等待时间等现实约
健身动作识别是智能健身系统的核心环节。为了提高健身动作识别算法的精度和速度,并减少健身动作中人体整体位移对识别结果的影响,提出了一种基于人体骨架特征编码的健身动作识别方法。该方法包括三个步骤:首先,构建精简的人体骨架模型,并利用人体姿态估计技术提取骨架模型中各关节点的坐标信息;其次,利用人体中心投影法提取动作特征区域以消除人体整体位移对动作识别的影响;最后,将特征区域编码作为特征向量并输入多分类器
无人机(UAV)协同控制是指一组UAV以机间通信为基础、群体智能为核心,合作分工完成某一共同任务的控制方式。UAV集群是拥有一定自主能力的大量UAV基于局部规则执行各项任务的多智能体系统,与单架UAV相比,UAV集群有着高效率、高灵活性和高可靠性等优点。针对近几年UAV协同控制技术的最新发展动态,首先,从民用和军事两个角度举例说明多UAV技术的应用前景;接着,对比分析一致性控制、蜂拥控制和编队控制
针对由连续变量和分类变量构成的混合变量优化问题(MVOP),采用协同进化策略来对混合变量决策空间进行搜索,提出了一种协同进化蚁群优化算法(CACOAMV)。CACOAMV分别采用连续和离散蚁群优化(ACO)策略生成连续和分类变量子种群,通过合作者来对连续和分类变量子向量进行评价,分别对连续和分类变量子种群进行更新来实现对混合变量决策空间的高效协同搜索。进一步地,利用信息素平滑机制增强对分类变量解空
针对传统多阈值分割方法计算复杂度随着阈值个数的增加而增长,以及对给定图像进行多阈值分割操作时效率很低等问题,提出了一种基于共生生物搜索(SOS)算法结合Kapur熵的多阈值分割方法。首先将精英反策略(EOBL)引入到SOS算法的共栖阶段,从而改善传统SOS算法处理复杂优化问题时易陷入局部最优的问题;然后引入莱维飞行策略扩大SOS算法的的搜索范围,增强其搜索轨迹的随机性;最终将得到的改进共生生物搜索