MNIST数据集相关论文
手写数字识别在多个领域具有广泛应用。在实际应用中,手写数字识别的准确性至关重要。为获得最佳的手写数字识别模型,文章提出一种......
针对深度学习构建网络模型以及确定模型参数的问题,在分析神经网络基本结构和线性模型局限性的基础上,研究了深度神经网络设计的关......
本文基于神经网络参数优化的相关技术,阐述了SGD、Momentum、AdaGrad和Adam算法的基本思想,并在函数最优化问题中和经典手写数字识......
重力的正反演问题是解释重力勘探资料的核心内容之一,深度学习近年来发展迅猛,在诸多学科领域取得很大成果,其在地球物理领域地震......
针对结构设计不合理的卷积神经网络导致MNIST识别的准确率低、收敛速度慢和训练参数多等问题,提出卷积神经网络结构的改进模型。改......
为了提高手写数字的识别率,论文提出了一种改进的全卷积神经网络手写图像识别方法。首先通过传统的卷积神经网络获取手写数字图像......
传统的图像识别主要是基于浅层神经网络,主要包括人工神经网络和支持向量机,然而这些浅层神经网络的特征提取能力有限。本文提出的......
在深度学习的过程中,激活函数的选取是非常重要的,对于不同的激活函数如何选择合适的权重初始值是本文研究的重点。本文主要就激活......
针对特定任务中深度学习模型的激活函数不易选取的问题,在分析传统激活函数和现阶段运用比较广泛的激活函数的优缺点的基础上,将Ta......
本文以MNIST数据库为例,用TensorFlow读取数据集中的数据,并建立一个简单的图像识别模型。同时以TensorFlow为工具,写一个手写体数......
随着人工智能的发展,数字识别技术也得到了关注并通过各种算法提高了识别准确率。数字识别在安防、交通、邮政等领域发挥越来越重要......
使用深度学习框架caffe和lenet网络,对手写数字识别方法进行了研究,基于mnist数据集,对lenet网络进行了训练,最后取得了较好的训练......
使用脉冲序列进行数据处理的脉冲神经网络具有优异的低功耗特性,但由于学习算法不成熟,多层网络训练存在收敛困难的问题。利用反向......