上三角矩阵代数相关论文
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,现在这一理论已成为现代数学中的一个热门分支.它与量子力学,非交换几何......
代数学中有个著名的Lvov-Kaplansky猜想,具体如下:一个域K上的全矩阵代数Mn(K)上多重线性多项式下的像是一个向量空间。多年来许多......
著名的Lvov-Kaplansky猜想(域K上未定元不可交换的多重线性多项式在全矩阵代数Mn(K)上的像是向量空间)是很多学者一直在研究的问题......
设F为一个元素个数大于3的域,T2(F)为F上的2×2上三角矩阵代数,P2(F)={A∈T2(F):A2=A},所有满足如下条件的映射φ:T2(F)→T2(F),A-......
借鉴Wang在研究2×2阶上三角矩阵代数上多重线性多项式的像时给出的新方法,给出一个多重线性多项式在3×3阶上三角矩阵代数上像的......
算子代数理论产生于20世纪30年代,随着这一学科的迅速发展,它已成为现代数学中的一个热门分支,它与量子力学,非交换几何,线型系统和控制......
(广义)Jordan导子以及Jordan映射是算子代数中两类非常重要的变换,也是上世纪50年以来富有成果的领域之一.对于(广义)Jordan导子与(......
本文在介绍矩阵空间保持问题的背景和发展概况之后,分别在非交换局部环和除环中,对上三角矩阵代数保持矩阵逆的双射进行了研究,得到的......
设C是复数域,T2(C)是C上2×2上三角矩阵代数.Tk2(C)记T2(C)中的所有k-幂等矩阵构成的子集,这里k≥2.若映射φ满足:由A-λB∈Tk2(C)......
设R和S是代数闭域K上的有限维代数.如果M和N分别是有限生成的(半-)Gorenstein投射右R-模和右S-模,则M■KN是有限生成的(半-)Gorens......
同调有限(即反变有限或正变有限)子范畴在代数表示论研究中起着重要作用.本文研究了阿贝尔范畴的子范畴扩张的反变有限、正变有限性.特......
设R是含单位元1和可逆元2的可换环,Tn+1(R)表示R上(n+1)×(n+1)级上三角矩阵全体所形成的矩阵代数.本文证明了Tn+1(R)的每一个若当自同构都可......
根据李代数的交叉模的定义,计算出上三角矩阵代数的交叉模等价类只有一个,相应的三阶上同调群平凡。......
设U=Tri(A,M,B)是上三角矩阵代数。利用算子论的方法讨论了上三角矩阵代数上的Jordan导子系,证明了上三角矩阵代数上的Jordan导子系......
设A是一个含单位元I的代数,M表示A的又模,若δ是A到M的线性映射,且任意a,b∈A,都有δ(ab)=δ(b)a+bδ(a)-bδ(I)a,则称δ是广义反导子.证明了当m≥n......
为进一步研究导子,给出了乘积零导子的定义,并用乘积零导子在基上的作用,将含幺环上上三角矩阵代数到其双模的任意乘积零导子,分解......
设R是有单位元1的连通交换环(R中除0和1外无其它幂等元),f是R上n阶上三角矩阵模Tn(R)到Tn(R)上的模自同构,如果对于任意的可逆矩阵A∈Tn(R......
探讨了交换半环上上三角矩阵代数的广义Jordan导子的刻画问题,证明了交换半环R上的上三角矩阵代数T_n(R)到T_n(R)-双模M的每个广义Jord......
H.Bass在其专著中引入了Morita环的概念,这类环包含了许多重要的代数的例子.考虑具有零双模同态的Morita环,找出相应的充要条件,从......
设C是复数域,T2(C)是C上2×2上三角矩阵代数。T2k(C)记T2(C)中的所有k-幂等矩阵构成的子集,这里k≥2.若映射Ф满足:由A-λB∈T2k(C......