可导映射相关论文
算子代数理论产生于20世纪30年代,是一门比较年轻的学科.它与量子力学,线性系统,非交换几何,控制理论,数论以及其他一些重要数学分......
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,现在这一理论已成为现代数学中一个令人关注的分支.它与量子力学,非交换......
学位
可导映射、Lie可导映射、Jordan可乘导子和Jordan可乘映射是算子代数与算子理论中非常重要的映射,受到学者们的广泛关注.本文首先......
算子代数理论产生于20世纪30年代,随着这一理论的迅速发展,它已成为现代数学中的一个热门分支,并与量子力学,非交换几何,线性系统和控制......
本文主要研究了套代数上的Jordan和Lie triple可导映射,全文共分四章.第一章介绍一些基本概念,专业术语,问题背景,并且给出了本文的主......
M是一个无限维复Hilbert空间H上的vN代数,ψ为M上一个线性映射,Z∈M,称ψ在Z处可导,如果ψ满足ψ(ST)=ψ(S)T+Sψ(T)对任意S,T∈M......
M是一个无限维复Hilbert空间H上的vN代数,ψ为M上一个线性映射,Z∈M,称ψ在Z处可导,如果ψ满足ψ(ST)=ψ(S)T+Sψ(T)对任意S,T∈M并且ST=Z成立......
研究了von Neumann代数A上的零点(m,n)-可导映射,证明了:对任意固定的非零整数m,n且(m+n)(m-n)≠0,如果线性映射δ:A→A对任意满足AB=0的A,B......
设T=Tri(A,M,B)为三角代数,δ:T→T是一个映射(没有可加性的假设).利用代数分解的方法证明了:如果对任意的A,B∈T,且A与B至少有一个是幂......
对于算子代数中的线性和非线性映射,众多学者已经得到大量的结论.在已有结论的基础上,本文主要在三角代数上对一类非线性可导映射......