闭项集相关论文
在计算机技术、信息存储技术及互联网高速发展的今天,越来越多的企业提高信息化程度。在企业的实际应用中,数据挖掘正在被频繁的提......
本文通过对关联规则挖掘中由候选项集生成频繁项集算法的分析,引入了格论的一些思想来改进算法,其中心思想是:通过在属性集和事务......
传统的规则提取算法产生的规则集合相当庞大,其中包含许多冗余的规则.使用闭项集可以减少规则的数目,而概念格结点间的泛化和例化......
针对关联规则挖掘中存在的规则数量过多,难于理解和应用的问题,提出了一种基于闭项集的无冗余关联规则挖掘算法.首先,给出了无冗余关联......
数据流挖掘是当今数据挖掘领域内热点研究问题。通常频繁项集的数据量大,影响挖掘结果的理解与应用,提出一种基于WCF-tree加权滑动......
针对许多算法不适合对分类数据进行聚类的特点,提出了一种基于最长频繁闭项集(LFCI)的聚类算法。使用改造后的频繁模式树,得到每个事务......
频繁项集挖掘是数据挖掘研究领域的一个基本问题,其瓶颈在于频繁项集全集的结果过多,冗余现象严重.主要的解决思路是只挖掘全体频......