叶绿素a及其衍生物仿生捕光材料的组装及其性能研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:wangxiao8910
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
光合作用是地球上最重要的化学反应之一,为地球上的生命提供了最重要的物质和能量来源。人们受自然界中天然的捕光蛋白复合物的启发,尤其是叶绿素和多肽骨架的复杂而精致高效的组装,已经合成了多种类型的仿生材料。由染料分子自身构成的捕光系统虽然可以具有较高的能量传递效率,但也有成本高、溶解性差等缺点。而无机模板材料虽然可以使染料分子密集规整的排列,但是其结构可控性差,一般缺乏自我调节和保护的功能。脂肽分子作为一种新型的生物模板剂,具有分子小、生物相容性好、可生物降解,以及自组装过程和组装体结构可调控等优点,越来越受到研究者们的青睐。本论文从构建仿生捕光材料的角度出发,将天然叶绿素a及其衍生物与设计的脂肽分子进行组装,扩宽叶绿素a及其衍生物的捕光范围,并提高稳定性。本论文分别以表面活性剂Triton X-100和脂肽分子作为仿生捕光材料的模板剂,诱导叶绿素a及其衍生物组装具有长波吸收的仿生捕光材料,通过对模板剂和色素分子的浓度控制,以及组装环境等各种因素调控组装,构建叶绿素a及其衍生物具有红区长波增强吸收的宽光谱仿生捕光材料。主要研究内容及结论如下:1)首先研究了表面活性剂Triton X-100与叶绿素a及其衍生物的增溶组装。通过紫外可见吸收光谱和圆二色(CD)光谱对其组装结构进行检测,发现脱镁叶绿素a与Triton X-100组装的吸收光谱中Soret吸收带有红移,并且在CD光谱上有很明显的J-聚集体的特征峰。这为我们下一步选择脂肽分子作为模板剂提供了重要参考。2)其次设计了C16HHCOOH、C16HHCONH2和C16NDND-CONH2三种脂肽分子,作为模板剂与天然的脱镁叶绿素a进行超分子共组装。研究表明在紫外可见吸收光谱中Qy峰有明显的长波长移动,从荧光光谱上也可以看出组装后有新的荧光峰出现。并且组装后的荧光寿命相比较未加入脂肽分子的情况出现一个短寿命,推测形成了J-聚集体。在这几种脂肽中,C16HHCONH2和脱镁叶绿素a组装后产生红移现象更明显,组装效果也最好。3)最后,将通过置换反应获得的铜代脱镁叶绿素a与C16HHCOOH脂肽分子在不同p H的缓冲溶液中组装。发现在不同的p H下铜代脱镁叶绿素a与C16HH-COOH分子都可以共组装形成有一定空间构象的聚集体,但是在p H=3.0的PBS缓冲溶液中组装效果强于在p H=6.5的MES缓冲液中的组装,而且在铜代脱镁叶绿素a和C16HH-COOH浓度比为1:1时的组装效果最好。从紫外可见吸收和CD光谱以及荧光光谱分析结果来看,铜代脱镁叶绿素a和C16HH-COOH的组装不如脱镁叶绿素a和C16HH-COOH的组装,本部分研究初步表明叶绿素中的金属离子对仿生捕光材料组装可能有显著影响。
其他文献
乙偶姻,又叫3-羟基丁酮(acetoin),是食醋中一种重要的风味物质,是食醋中继乙酸和糠醛之外的高含量挥发性物质,也是标志性功能保健成分川芎嗪的前体。川芎嗪具有扩张血管、增加动脉血流、抑制血小板聚集和降低血小板活性等作用,因此提高食醋中乙偶姻及其杂环衍生物川芎嗪的含量对提升食醋品质具有重要意义。但是目前在食醋酿造菌中,乙偶姻的合成代谢调控机理还未见相关报道。本论文以巴氏醋杆菌为研究对象,一方面对
学位
层层沉积是一种制备复合膜的有效方法,制备出的复合膜具有优异的性能。通过调节复合膜的组成成分与比例,能够对复合膜的结构与功能进行有效控制,层层沉积制备复合材料已成为各领域的研究热点。在本论文中采用层层沉积制备复合膜,选取聚合物羧甲基纤维素(CMC)与片层材料蒙脱土(MTM)、氧化石墨烯(GO)作为原料。通过静电相互作用,聚合物CMC先吸附在片层材料表面上构成CMC/片层材料聚集体,随后通过层层沉积制
学位
酶是体内控制物质代谢和能量转移的重要催化剂,但是天然酶存在提取纯化困难、不易长期储存和易受外界干扰等缺点。纳米酶是一类兼具纳米材料的独特性能和生物酶的催化功能的模拟酶。纳米酶具有易制备、高稳定性和催化效率高等特点,在医学、化工、食品、农业和环境等领域有广泛的应用。在稳定性上纳米酶远胜生物酶,但由于纳米酶易团聚造成活性降低,故需要研究开发性能优秀的纳米材料,在众多纳米材料中稀土材料表现突出。鉴于此,
学位
大量使用化石燃料造成的环境问题与能源危机是目前全球面临的突出问题,氢气是一种清洁、高效、可再生的替代清洁能源,而生物制氢法是最为绿色的方法。其中,光合生物制氢可以直接将太阳能转化为氢能,是目前研究的热点。由于莱茵衣藻中氢化酶活性高、制氢成本低、遗传背景清晰,因此,是研究光合微藻生物制氢的模式物种。但莱茵衣藻制氢存在很多问题,例如:自然状态下微藻产氢量极低,特别是其光合放氧严重影响产氢酶的活性等。而
学位
肝癌是一类严重威胁人类生命健康的疾病,长期受到医学和药学领域的广泛关注。尽管手术治疗是2017年版原发性肝癌诊疗规范中推荐的首选治疗方案,但遗憾的是鉴于肝癌的早期临床表现不明显,未引起患者的足够重视,大多数患者在诊断时已是晚期,失去了手术治疗的最佳时间。因此肝癌的诊断时机越早越好,靶向制剂在肿瘤检测中非常有前景。本论文的主要研究目标是合成一种含有半乳糖结构的核壳型荧光纳米球,能通过半乳糖的靶向作用
学位
“内毒素”一词是由Richard Pfeiffer在19世纪首次提出的,它是革兰氏阴性细菌外膜的主要成分。内毒素是由多糖O抗原、核心多糖和类脂A三部分组成,其毒力中心存在于类脂A中。当细菌死亡溶解或者用人工的方法破坏细菌细胞壁时内毒素就会被释放出来,内毒素会引起许多疾病的产生,威胁人类健康,其中最为常见的就是败血性休克,过量的内毒素甚至会引发机体的死亡。所以,对内毒素的检测尤为重要,传统检测内毒素
学位
组织因子(Tissue factor,TF)是由263个氨基酸组成的跨膜单链糖蛋白,分子量为47 KDa,是外源性凝血的启动子。当血管破裂时,TF激活凝血级联反应,导致凝血酶的爆发式生成,产生大量的血小板,使血液凝固。临床医学中,将血浆中添加TF后凝固所需要的时间定义为凝血酶原时间(Prothrombin time,PT)。PT的延长或缩短与多种疾病相关,是血液临床检验的常规项目,用于PT检测的就
学位
川芎嗪(即2,3,5,6-四甲基吡嗪)对人的心脑血管健康有良好的保健功能。凝结芽孢杆菌(Bacillus coagulans)是一种可以产生芽孢的益生菌,其芽孢耐热性好、可耐受胃酸和胆汁。在本研究之前,未见有采用益生菌生产川芎嗪的相关研究报道。本论文的主要研究内容有:(1)本研究发现凝结芽孢杆菌可以产生川芎嗪的前体乙偶姻(即3-羟基-2-丁酮),但由于目前利用乙偶姻合成川芎嗪的方法都需要较高的反应
学位
二氧化钛是一种极具发展前景的光催化材料,与其他半导体材料相比,具有催化性能高、稳定性好、无毒价廉等优点。但二氧化钛作为光催化材料明显存在两点不足:二氧化钛的禁带宽度较宽,只能被波长较短的紫外光激发,可见光利用率低;光生电子和光生空穴极易复合,光生载流子效率低。离子掺杂和纳米化是解决这两个问题的有效途径。针对目前二氧化钛光催化研究中存在的问题,本论文提出以结构和性质易于调控的功能性短肽的组装体为模板
学位
神经细胞分化受外界物理环境因素(机械强度、形貌及生物功能配体等)的影响,而水凝胶可以模仿细胞外环境并促进神经细胞分化。近年来纳米材料的出现为神经损伤的治疗提供了一种有效策略。研究人员通过组织工程方法在水凝胶内植入了纳米级支架,具有支持和促进神经细胞和轴突的生长的作用。对于人工纳米合成材料,有化学合成复杂、成本高且污染严重的缺点,因此我们选用一种天然无机材料硅藻壳,它的突出特点是经硅藻矿化可形成高度
学位