高温裂解酞菁聚合物及其电化学性能研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:lxlhenhao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳基材料,由于其高孔隙率、高化学和物理稳定性、低成本以及可再生性,成为超级电容器中负极材料的最佳选择之一。因此寻找具有高比表面积和合适孔径,且有杂原子掺杂的碳基材料,是目前的研究热点。酞菁(Phthalocyanine,Pc)聚合物是一种工程热固性树脂,具有丰富的氮含量且具有独特的18电子共轭大环体系。本文选用酞菁聚合物作为碳源,添加不同纳米材料与无金属酞菁混合后高温裂解制备用于超级电容器的负极碳材料,并对其电学性能进行测试。研究不同的纳米材料对高温裂解酞菁聚合物的形貌及性能影响,确定纳米材料与酞菁聚合物的混合比例,主要研究内容如下:(1)将无金属酞菁作为碳源,添加纳米二氧化硅(SiO2)作为硬模板,经过高温裂解后,使用氢氟酸对纳米SiO2进行蚀刻,制备氮自掺杂多孔碳材料(Nitrogen Self-Doped Porous Carbon Materials,NPCM)。发现当添加质量分数为50%的纳米SiO2时,所制备的NPCM具有合适的比表面积(550.5 m~2/g),并且氮含量为2.1at%。同时,基于制备的NPCM电极材料在1 A/g的电流密度下表现出248 F/g的高比容量。(2)将无金属酞菁作为碳源,添加单壁碳纳米管(Single-Walled Carbon Nanotube,SWCNTs),通过简单的溶液混合和机械搅拌来进行复合,高温裂解后制备氮自掺片层多孔碳材料(Self-Nitrogen-Doped Sheet Porous Carbon Materials,SPCM)。由于溶液混合时无金属酞菁与SWCNTs在界面处的π-π相互作用,使得酞菁高温裂解后形成类似石墨烯的层状结构。发现当添加质量分数为10%的SWCNTs时,SPCM作为超级电容器负极材料在1 A/g下显示出228 F/g的高比容量和出色的稳定性(在2000次循环后保持93%的比容量)。(3)将无金属酞菁作为碳源,同时添加纳米SiO2和SWCNTs用作模板,协同作用,经过高温裂解后,使用氢氟酸对纳米SiO2进行蚀刻,由于纳米SiO2和SWCNTs的协同作用,获得了片层多孔氮自掺杂碳材料。发现当三者质量比为Pc/SWCNTs/SiO2=1:0.05:0.5时,复合材料作为超级电容器负极材料在1 A/g下的比容量为278.3 F/g,并且经过5000次循环后,复合材料仍保持88.7%的比容量,展示了优异的稳定性。
其他文献
喷涂油漆是工业领域中保护、装饰设备表面的常用方法,当油漆破损或对设备进行检修时需要去除原来油漆。除漆质量直接影响设备的后续使用与性能。激光清洗作为一种新型的表面清洗技术,相比传统清洗技术具有精确可控、绿色环保的优势,将激光清洗技术应用到油漆涂层清洗领域具有重要意义。本文进行了 2024铝合金表面油漆涂层的激光清洗技术研究。主要从三个方面展开:一是探究了激光入射角度对激光除漆效果的影响;二是利用响应
学位
随着高速时代的到来,电子信息产品越来越朝着小型化、集成化和功能化的方向发展。印制电路板与元器件之间的互连主要依靠焊接,现在对高精度的焊接要求也越来越高,同时传输频率的提高,其时钟频率不断提高,导致信号上升时间不断减小,使得信号传输损耗成为了不可忽视的问题。本工作重点研究了以激光焊接为目标的互连的信号传输损耗,以插入损耗作为表征参数,针对目前印制电路板在高速传输中的信号完整性问题,设计并制造了高速电
学位
新高考模式的尝试,产生了"选课走班制"的应用,这种教学模式充分地尊重了学生的个性,有利于实现因材施教的教育目标,也能让高中生更早地体验到大学的教学方式。但是,由于走班制的推行,也使得班级的管理变得更加艰难,通常会反映出,同学们对班级的观念不够深刻,班主任管理职能受限等问题。在此基础上,对走班制班级管理中出现的一些问题进行了分析,以及如何优化走班制班级管理的模式。
会议
高镍镍钴铝酸锂(LiNi0.8Co0.15Al0.05O2,NCA)正极材料由于其高可逆稳定性、优异的加工性能和储存性能被认为是一种很有前景的高镍正极材料的候选者。但是由于NCA合成过程中锂源的过量加入和表面晶格氧的析出,会导致材料表面残留碱性锂盐的过量堆积。而过量的碱性锂盐会加速电解液的水解、加剧HF对材料的腐蚀、产生气体等,这不仅会使得材料的电化学性能减弱,而且还会导致电池的安全性能变差。为了
学位
随着5G/6G电子通信技术朝超高频率、超高速率以及低延迟的方向发展,对电子基材的电性能以及力学性能提出了新的挑战。以玻璃纤维环氧树脂(FR4)和聚苯硫醚(PPS)为代表的高频介质基材因具有低介电常数、低介电损耗以及较强的耐化学性等优点被视为开发5G/6G高频通信技术的理想材料。由于FR4与PPS受到表面粗糙度较小且缺乏可吸附金属粒子的极性基团的条件限制,使得难以在其表面制备粘附强度较高的金属层。因
学位
湿度作为一个重要的环境参数,在农业仓储、环境监测、工业制造等多个领域需要被严格监测,人们对湿度传感器的灵敏度、滞后性、响应时间、长期稳定性、湿度量程等性能指标提出了更高的要求。在各类湿度传感材料中,二维过渡金属碳化物/氮化物(MXene)由于其独特的物理和化学性质得到许多学者的关注研究,但MXene在潮湿的空气或水中表现出的低稳定性及不够迅速的响应恢复时间,仍然限制了其在湿度传感器中的广泛应用。本
学位
基于扇出型晶圆级封装的超薄层叠封装和挠性电子互联等技术,可满足消费类电子产品对于轻薄化和小型化的需求,在未来智能电子系统领域具有重要应用前景,而聚合物材料表面金属化是超薄Po P封装、挠性电子互联等实现后续互联电路制备的关键技术之一,受到行业的广泛关注,其研究热点有金属化层的电气性能、镀层与基板的结合力等。论文基于实际需要,研究了SiO2填充型环氧树脂基板和PET基材两种材料表面化学镀铜沉积技术。
学位
锂硫(Li-S)电池因其较高的理论能量密度,被认为是极具前景的先进储能系统。然而,可溶性中间产物多硫化物的穿梭行为和绝缘性硫物种缓慢的反应动力学,导致硫利用率低和容量快速衰减。本文通过调控沸石咪唑酯骨架(ZIFs)衍生材料的组成和结构,制备了兼具高导电性和高催化/吸附活性的功能化多孔碳材料,其丰富的活性位点能捕获并促进多硫化物氧化转化,快速的电子传递可加快电化学反应动力学,抑制穿梭效应并提高硫利用
学位
实际工作的滚动轴承大都处于乏油润滑状态下,已有的大多数研究集中于接触区内部的润滑状态,但对接触区外部润滑剂流动分布回填和油池形态的研究较少。实际上,接触区外部油池形态对接触区内部润滑状态存在显著影响。接触几何特征、运动特征和外部供油方式是影响油池形态的重要参数,但目前对该方面的研究明显不足。因此,本文采用定量供油方式复现乏油润滑状态,在球-盘点接触光干涉润滑油膜测量装置,对近接触区油池形态及演化过
学位
行人检测是计算机视觉的一个重要研究分支,使用检测算法判断图像中是否存在行人目标,如果存在,标记出行人的准确位置。近年来,随着计算机硬件、深度学习以及卷积神经网络的快速发展,行人检测技术在智能安防、智能驾驶和智能机器人等多个领域得到广泛应用。现实生活中,进行行人检测时存在行人尺度姿态多样、行人被遮挡、光线不均匀、背景干扰等众多的影响因素。其中,行人尺度姿态多样和行人被遮挡是本论文的研究重点。一方面,
学位