手性天冬氨酸辅助合成共价有机框架纳米球用于抑制β-淀粉样蛋白聚集

来源 :湖北大学 | 被引量 : 0次 | 上传用户:ZS54902
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
β-淀粉样蛋白(Aβ)毒性聚集与阿尔茨海默病(AD)等神经退行性疾病相关。主流观点认为抑制Aβ聚集是AD的有效诊疗策略之一。最近的研究表明,具有手性界面的纳米粒子(NPs)能够高效抑制Aβ聚集。然而,NPs与Aβ蛋白的作用机制还不是十分明确,哪种类型的NPs更适合用作蛋白聚集抑制剂仍然难以确定。尽管如此,越来越多的证据表明,纳米抑制剂至少需要控制粒径大小和表面性质这两个关键因素。球形共价有机框架纳米粒子(COF NP)代表了一种新型纳米材料,与二维COF材料和其他无机、有机纳米粒子相比,其在生物医学方面的应用优势明显。然而,COF NP通常存在粒径大小难以控制、溶剂分散性较差、表面功能化步骤繁琐等不足。鉴于此,发展一种能够同步实现COF NP粒径大小控制和表面功能化的合成方法十分必要。本课题提出一种氨基酸辅助合成策略,即使用手性天冬氨酸(D-和L-Asp),将其作为酸催化剂、水分散剂、成核抑制剂以及手性功能分子,同步实现球形COF NP的粒径尺寸控制和表面手性氨基酸功能化。COF NP粒径尺寸的时间和浓度依赖性研究表明,Asp-COF NP的尺寸控制遵循末端限制生长机制。在此基础上,本课题对比研究了COF NP的粒径大小、表面手性差异对Aβ蛋白聚集抑制效果的影响。结果表明:(1)COF NP的粒径大小对Aβ蛋白聚集的抑制存在显著影响。粒径大的COF NP有利于延长Aβ聚集的迟滞时间,粒径小的COF NP有利于减少Aβ纤维聚集体的生成;(2)Asp-COF NP的抑制效果存在手性差异。D-Asp-COF的蛋白聚集抑制效果优于L-Asp-COF,并且显示出良好的Aβ聚集诱导的细胞毒性抑制效果,显著的提高了细胞存活率。本论文的研究工作为COF纳米粒子的可控制备提供了新的方法,并为Aβ蛋白聚集抑制剂的设计提供了新的思路。
其他文献
聚异丙基丙烯酰胺(PNIPAM)是一种温度和酸度敏感型聚合物,该材料有线性聚合物、共价交联聚合物和表面接枝材料等类型。对于异丙基丙烯酰胺(NIPAM)单体聚合生成的线性聚合物,当溶液温度低于其低临界相变温度(LCST)时,该聚合物呈亲水性而溶于水,当溶液温度高于LCST时,该聚合物呈疏水性而从水溶液中析出,即调整温度可以让该聚合物在水溶液中可逆溶解和析出。而NIPAM共价交联聚合物具有酸度敏感性,
学位
化学学科的目标之一是对化学本质及反应过程的研究。过程机理研究是了解化学反应的必由之路。串联反应以其多方面(原子、能源、劳动力、溶剂和时间)经济性等原因,吸引了越来越多化学家的研究兴趣。探索新的串联反应并揭示其反应途径,是将串联反应用于复杂分子高效合成的基础。笔者所在的课题组长期致力于溶液配位化学的研究,提出了固-液结构相关性原则来解析复杂反应过程的方法,并综合一系列测试手段,探究3d金属离子导向多
学位
电化学阳极反应技术包括用于氢生产的析氧反应(OER)、尿素氧化(UOR)和甲醇氧化(MOR)。由于阳极反应过程动力学迟缓,且氧化途径复杂,过电位大,整体速率受到严重限制。在这种情况下,3d过渡金属材料作为常用的高效电催化剂是通过调节其内在电子结构和化学性质的来优化,其中,3d过渡金属有机-无机前驱体由于可定向设计得到了广泛的应用,尤其是镍的衍生物,Ni基催化剂通过热解或掺杂手段使结构中镍离子的标称
学位
近一个多世纪以来,重氮化合物的转化研究一直受到化学家的广泛关注,从重氮化合物产生的高反应性卡宾是一系列有机反应的关键中间体,目前已经广泛应用于天然产物的制备、药物分子、材料分子等复杂化合物的合成。这些反应大多数是使用过渡金属催化剂进行的,而使用主族元素形成卡宾中间体的转化反应尚未被广泛研究。最近的研究表明,缺电子的三芳基硼烷可用于催化重氮化合物原位生成活性卡宾中间体,在活化重氮化合物转化方面表现出
学位
糖尿病是一种以血液中葡萄糖浓度升高为特征的严重疾病。如果治疗不当,可能会导致如肾衰竭、失明、心脏病、中风和截肢等严重的并发症。因此能够精确、简单、实时的监测血糖水平对糖尿病的预防和治疗显得至关重要。纳米材料由于其高导电性、高催化活性和良好的生物相容性而被广泛应用于无酶葡萄糖传感器。但是由于其具有复杂的晶体结构、成分和固有缺陷,使得人们很难在催化反应的过程中确定活性位点以及进一步了解活性位点与催化性
学位
在过去的几十年里,由于具有微孔和介孔的特性,有机聚合物在储存和分离重金属和气体等领域得到了广泛的应用。根据不同的合成方法和结构,将微孔有机聚合物(MOPs)分为四个分支:共价有机框架(COFs)、超交联聚合物(HCPs)、共轭微孔聚合物(CMPs)、自具微孔聚合物(PIMs)。其中COFs和CMPs属于两种共轭MOPs。近年来共轭MOPs因其结构可调性、扩展π共轭而受到越来越多的关注。且共轭MOP
学位
有机氟化合物由于其特殊的性质,在材料科学、医药、有机合成化学等领域发挥着重要的作用。从有机氟化合物有效开发的角度来看,不仅C-F键的形成而且C-F键参与的各种交叉偶联反应已成为当前积极研究的主题。二者相比,虽然在C-F键的官能团转化这一特定研究领域取得了一定的进展,但是C-F键参与的各种交叉偶联反应依然亟待发展。由于C-F键的极高离解能,含氟化合物的选择性脱氟功能化滞后并且仍然具有相当大的挑战性。
学位
含萘骨架广泛存在于天然产物、药物和重要的配体,以及有机材料中。因此,长期以来,取代萘的合成是一个有吸引力的研究方向。得益于世界各国科研学者的持续研究,已经在包括1,2-、1,3-、1,4-、1,6-、1,7-和1,8-双取代萘的制备方面取得了重大进展。虽然通过C-H键官能团化策略构建的1,5-二取代萘是天然产物和生物活性分子中普遍存在的结构骨架,但是运用C-H键官能团化策略使萘C5-H官能团化仍未
学位
氧气是绿色且经济的理想氧化剂,近年来,关于利用氧气作为氧化剂参与的化学反应的报道日渐增多,氧气的活化也逐渐成为人们关注的热门研究方向。一个多世纪以来,人们认识到电化学在控制分子运动以及进行化学转化上面有着不俗的表现,随着绿色化学的理念深入人心,利用有机电化学手段来实现氧气的活化并进一步完成各种氧化反应已经成为十分热门的研究课题。本文的研究重点就是在电化学条件下实现氧气的活化,随后对有机化合物进行氧
学位
吲哚基硒醚、硫醚在药物、材料等领域具有重要用途,α-硒基酮则是高效合成α,β-不饱和酮的前体。通过对吲哚或酮的C-H直接官能团化合成这些硒(硫)化合物是最简洁的方法。本论文研究利用N-F试剂作为氧化剂,二苯基二硒醚或二苯基二硫醚作为硒化或硫化试剂,实现酮和吲哚类物质的硒化反应以及吲哚类的硫化反应。首先对吲哚类C-H硒化反应进行了研究。在二苯基二硒醚和吲哚的反应中,利用1-氯甲基-4-氟-1,4-重
学位