玄武岩玻璃析晶性能的研究

来源 :西南科技大学 | 被引量 : 1次 | 上传用户:yaozi303
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
玄武岩是地球洋壳和陆壳的重要组成物质,属基性火山岩,自然界资源丰富。玄武岩性能优异,应用广泛。玄武岩经再次高温熔融,可生产纤维、岩棉、铸石、鳞片等产品。玄武岩再次熔化一般需要1400℃以上的高温,冷却时具有析晶上限温度较高,容易析晶等特性,是影响以玄武岩为原料,主要组成以玄武岩玻璃或玻璃陶瓷形态存在的工业生产及产品质量控制和开发新型材料的关键因素。全面深入系统的研究玄武岩玻璃析晶规律,可为玄武岩纤维、铸石、鳞片及岩棉的工业化生产及产品质量控制和发展基于玄武岩的高放射性废物玻璃及玻璃陶瓷固化新型材料提供理论支撑。选取三种具有代表性的玄武岩作为实验材料,用偏光显微镜和X射线衍射(XRD)分析得到其主要矿物组成。通过1450℃高温熔制快速冷却制成玄武岩玻璃,用差示扫描量热法(DSC)研究其析晶动力学。玄武岩玻璃-1的三个结晶峰的析晶活化能(E)分别为314.20 kJ/mol、1232.49 kJ/mol和696.89 kJ/mol,表明玄武岩玻璃-1在高温下更容易结晶。除此之外,晶体生长指数表明玄武岩玻璃-1的结晶方式主要是表面结晶。玄武岩玻璃-2在890℃、1100℃和1190℃的析晶活化能(E)分别是165.23kJ/mol、352.21 kJ/mol和3415.34 kJ/mol,主要晶化方式在890℃和1100℃是体积晶化、1190℃是表面晶化。玄武岩玻璃-3在890℃、1100℃的析晶活化能分别是251.91 kJ/mol、699.14 kJ/mol,主要晶化方式为表面析晶。发现铁含量是导致玄武岩玻璃析晶上限温度较高且容易析晶的主要原因。利用叶腊石、透辉石、碳酸钙和玄武岩-3,通过重点调控其中的铁含量制成配合料制备改性玄武岩玻璃。改性使玄武岩玻璃中的TFe含量从改性前14.01 wt.%降至改性后的7.62 wt.%。析晶动力学结果表明改性玄武岩玻璃的析晶活化能高于未改性玄武岩玻璃。利用XRD对经过晶化热处理后的改性玄武岩玻璃样品进行分析,测量不到析晶相的存在,只能通过SEM分析发现少量析晶相。降低铁的含量可以有效地抑制玄武岩玻璃析晶,提高玄武岩玻璃的稳定性。借助X射线荧光光谱、穆斯堡尔谱、熔体的NBO/T值计算以及拉曼光谱等手段,构建并提出玄武岩玻璃的短程有序微观结构模型。玄武岩玻璃是由短程有序和长程无序的三维空间网络所构成的,玻璃中各种元素均是以离子或离子团的形式存在,离子团的主要短程有序微观结构是网络形成阳离子Si4+、Al3+、部分Fe3+及Ti4+构成的岛状、链状、层状及架状结构的阴离子团单元,网络变性阳离子Ca2+、Mg2+、部分Fe3+、Fe2+、Na+、K+等均匀而无序地分布在空隙中。
其他文献
集成电路小型化的快速发展,使无铅钎料在使役过程中的组织结构演变及性能稳定性备受关注。添加合金元素改性无铅钎料,实现无铅钎料合金多元化发展成为必然。Sn-0.7Cu无铅钎料综合性能良好、成本低廉,应用前景广泛,但其使役过程中在熔化温度、润湿性及稳定性等方面仍存在问题。钎料合金的腐蚀行为是反映其使役性能的重要组成部分。因此,研究添加合金元素对Sn-0.7Cu无铅钎料合金的组织结构及性能的影响,揭示其腐
学位
高强轻集料混凝土的典型脆性破坏是它不能广泛运用的关键原因。因此,从轻集料混凝土的破坏特点出发,提出了堇青石/贝利特核壳结构复相高强轻集料用来改善它的脆性并提高其力学性能。在此背景下,为了进一步研究复相高强轻集料对轻集料混凝土宏观性能的影响规律,本课题采用有限元软件模拟分析了复相高强轻集料混凝土的微区应力分布状态,模拟复相高强轻集料混凝土的破坏过程。探究复相高强轻集料自身特性对轻集料混凝土破坏行为的
学位
透明陶瓷作为功能材料,不仅拥有传统透明材料的一般光学性能,而且其高稳定性、高强度等特性使其能服役于特殊环境。当前的研究工作集中于提升陶瓷性能以推动其实际应用。立方结构的Gd2Zr2O7能制备成透明陶瓷,其中Gd3+能缓冲荧光离子的聚集,提高其荧光性能。过去对其制备工艺参数进行系统探究,并初步研究其掺杂荧光性能。为进一步提升Gd2Zr2O7透明陶瓷的光学性能,引入非化学设计理念和高熵设计理念,改造晶
学位
铜(Cu)、钽(Ta)薄膜是集成电路互联结构中应用广泛、稳定性和可靠性强的功能材料。Cu薄膜具有优异的延展性、热稳定性、抗电迁移性和电爆性能,在半导体、电爆、新能源、光电、装饰等方面具有广阔应用前景。稳定α-Ta薄膜具有较好的延展性和低电阻率,与铜无不良反应,是一种潜在的铜/硅或铜/二氧化硅互扩散阻挡层,并被广泛用于集成电路、枪管保护涂层、耐磨耐腐蚀、机械应用等。Cu、Ta薄膜结构、取向、形貌以及
学位
无线通讯技术在不断地更迭,5G网络与多种新技术的联合发展对人们当下的生活提供了极大地便利,这离不开基础的材料研发和应用。由介质陶瓷制备的各种通讯相关器件在各个领域得到了广泛的应用,同时也面临着新时代更高要求的挑战。因而,作为基础核心材料,新型微波介质陶瓷的研发和应用受到了更多的关注和重视。本文选择Li2Mg3TiO6体系为基础材料,以固相法分别在其Ti位和Mg位进行了(Al0.5Nb0.5)4+离
学位
MgO是一种宽带隙材料,在300-2500 nm波段具有较好的透过率,其光学窗口被广泛应用于航空航天、光电器件等领域。但与空间探测器的光学需求相比,MgO光学窗口的透过率仍需进一步提高。基于此,为了研制高性能、宽波段的MgO宽谱光学窗口,开展了相关研究,其研究结果如下:(1)采用脉冲激光气相沉积(PLD)技术,在同质外延的单晶MgO薄膜中嵌埋了纳米Fe、Gd和(Fe,Gd)颗粒,并制备出一系列的金
学位
热电转化技术作为一种环保,可靠,应用范围广的绿色能源技术以及环保制冷技术受到了国内外的广泛关注,相应的制作热电器件与系统的热电材料则引起了科学界的关注及广泛的研究。但制约热电技术广泛应用的主要原因在于目前已商用的热电材料的转换率低下导致无法与常规的热电发电机或制冷设备相竞争。因此,目前对于热电材料的主要研究方向在于如何提高材料的热电性能。过渡金属硫族化合物(TMDC)作为一类新型层状材料,由于其高
学位
生物类分子作为生命活动的基石,研究这类复杂体系在凝聚相下的结构和动力学变化是目前生物科学领域的重点和挑战。生物分子被光照射后会产生电子与光波直接的相互作用,通过研究物质与光波之间的相互作用机理,探讨激发态下生物分子的光谱性质对研究生物分子的结构和性质有重要意义。对于生物类分子体系激发态下光谱性能的理论研究尚局限于小分子体系,对于大分子生物体系,激发态下的光谱理论计算还存在一定的空白。因此针对不同体
学位
苯腙类和苯酰腙类探针分子合成简单、结构调节性强,可灵活设计其与离子的结合位点,因此它们在离子检测方面分别被广泛研究。但将这两类探针分子进行比较研究的工作还相对缺乏,这阻碍了结构设计对识别性能影响规律的发展。因此本文将苯腙类和苯酰腙类作为设计探针分子的对象,通过在主体结构中引入不同给(吸)电子基团,合成了七种苯腙类探针分子和五种苯酰腙类探针分子,并首次比较了这两类探针分子的结构差异对离子识别性能的影
学位
共价交联聚合物材料由于其优异的机械强度和热稳定性,在日常生活的诸多领域得到了广泛的应用。大多数共价交联聚合物材料是在环境条件下使用的,其中共价聚合物网络的完整性直接影响聚合物材料的性能和寿命。然而,在交联聚合物中,长期的力扰动是不可避免的,通常会导致共价键的不可逆断裂,从而引起交联网络的化学损伤。这种现象会显著削弱共价交联聚合物材料的机械和功能性能,缩短其使用寿命,甚至给其应用带来安全风险。弱力激
学位