论文部分内容阅读
随着过去几十年水下无人技术的巨大发展,水下无人航行器(AUVs)已被越来越多地用于执行海洋风险任务,如海上石油和天然气勘探和开采、海底管道检测、海洋测绘、深海考古以及扫雷等。在执行上述任务的过程中,通常需要AUVs具有良好的定深能力和精确的轨迹跟踪能力。然而,AUVs动力学模型具有多变量,高度非线性,强耦合及不确定特性,加上海洋环境中难以测量的时变扰动影响,使得AUVs定深与轨迹跟踪控制面临挑战。此外,AUVs轨迹跟踪控制要求驱动AUVs跟踪一条时变的参数化轨迹,对收敛时间具有强约束,增加了控制器设计的难度。为了克服上述挑战,推动AUVs定深与轨迹跟踪控制技术的发展,本文研究了在模型不确定及外界时变环境干扰下的AUVs定深与三维轨迹跟踪控制问题,给出了AUVs定深与轨迹跟踪控制方法设计的一些新结果。本文的主要研究内容包括:1.针对以往的AUVsPID定深控制器不能精确补偿输出扰动、模型不确定与输入时滞的问题,以及以往的AUVsH∞和H2定深控制器设计中没有特别考虑输入时滞的问题,提出了一种鲁棒H2最优定深控制方法,可有效处理输入时滞、输出扰动及航行器的模型不确定性,并且可以定量整定系统名义性能与鲁棒性。通过与以往的纵倾-深度环PD定深控制器进行仿真比较,表明了该控制器可以提供更高的跟踪精度、更好的输出扰动抑制能力、更强的抵抗模型不确定的鲁棒性以及更小的鳍角输入。然而,该控制器需要已知AUVs系统的传递函数。2.针对以往的AUVs轨迹跟踪自适应控制、反步控制、神经网络控制、模糊控制以及模型预测控制方法只能保证航行器轨迹跟踪的鲁棒稳定性,不能保证其暂态响应的问题,提出了三种指数收敛的鲁棒控制器,即min-max、saturation和smoothtransition控制器。导出了跟踪误差的指数收敛解析表达式,揭示了怎样通过调节控制器参数来获得期望的跟踪误差暂态响应。通过与以往的AUVsRISE-based轨迹跟踪控制器进行仿真比较,表明了这三种控制器不仅提高了收敛速度,还能补偿水下环境中典型存在的不光滑扰动(如随机扰动)。然而,这三种控制器需要已知不确定和扰动的上界,且没有考虑航行器中的惯性不确定性。3.针对研究内容2中所提出的三种控制器需要已知不确定和扰动的上界且没有考虑航行器中惯性不确定性的问题,以及以往的AUVs全局有限时间稳定跟踪控制器和自适应非奇异终端滑模控制器只能保证跟踪误差有界因而跟踪精度有待提高的问题,提出了两种有限时间稳定的跟踪控制器,即双闭环自适应积分终端滑模控制器与双闭环自适应快速积分终端滑模控制器,可使航行器的位置和速度跟踪误差局部有限时间收敛到零,并且不需要已知模型不确定(包括惯性不确定)及时变外界扰动的界信息。通过与传统的双闭环自适应积分滑模控制器进行仿真比较,表明了所提出的两种控制器可以提供更快的收敛速度和更强的鲁棒性。然而,与研究内容2中所提出的三种控制器相比,这两种控制器仅能保证跟踪误差在滑模面上的暂态响应,不能保证跟踪误差在到达滑模面之前的暂态响应。4.针对研究内容3中所提出的两种控制器存在奇异值的问题,提出了一种自适应非奇异积分终端滑模控制器。首先针对一般性的一阶不确定非线性动力学系统研究了自适应非奇异积分终端滑模控制器的设计。该控制器不存在奇异值问题,且不需要集中系统不确定的界信息,同时可保证系统跟踪误差全局有限时间收敛到零。然后将所设计的控制器应用到AUVs三维轨迹跟踪控制中,克服了研究内容3中所提出的两种控制器的奇异值问题,同时保证了鲁棒且快速的轨迹跟踪。最后,通过与传统的自适应比例-积分滑模控制器进行仿真比较,表明了该控制器可以提供更快的收敛速度和更强的鲁棒性。然而,相比于研究内容3中所提出的两种控制器,该控制器损失了收敛速度,即其仅能保证速度跟踪误差局部有限时间收敛到零,但位置跟踪误差却不再被保证是有限时间收敛到零,而是局部指数收敛到零。5.针对研究内容4中所提出的控制器在远离平衡点时收敛速度慢的问题,提出了一种自适应快速非奇异积分终端滑模控制器。首先仍然针对一般性的一阶不确定非线性动力学系统研究了自适应快速非奇异积分终端滑模控制器的设计。该控制器同时保证了在平衡点远距离和近距离处的快速、有限时间收敛。然后将该控制器应用到AUVs三维轨迹跟踪控制中。通过与研究内容4中所提出的控制器进行比较仿真,表明了该控制器提高了收敛速度。然而,该控制器的结构比研究内容4中所提出的控制器的复杂。6.针对以往的AUVs轨迹跟踪终端滑模控制器所采用的消抖方法会损失跟踪精度的问题,以及现有的自适应二阶非奇异终端滑模控制器在远离平衡点时收敛速度慢的问题,提出了一种自适应二阶快速非奇异终端滑模控制器,可在消除控制输入抖振的同时不损失跟踪精度,并可同时保证在远离和靠近平衡点区域的快速收敛性。此外,该控制器不需要已知系统不确定的界信息。通过比较仿真表明了该控制器比现有的自适应二阶非奇异终端滑模控制器提高了收敛速度,同时验证了该控制器相比于以往的AUVs终端滑模控制消抖方法的优势。然而,与研究内容5中所提出的控制器相比,该控制器却需要加速度测量信息。