IFK图像恢复模型的Gmres算法研究

来源 :西安理工大学 | 被引量 : 0次 | 上传用户:yhl0921
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
第Ⅰ类Fredholm积分方程(简称IFK模型)在求解过程中具有不适定性,为了获得其相对稳定的数值解,需要使用正则化方法来处理此类模型。广义极小残余算法(简称Gmres算法)目前是解决大型稀疏半正定非对称系数矩阵的线性方程组最有效的一个迭代算法,由于时间复杂度与空间复杂度较小等优势近些年广泛应用于各类工程领域。于是,本文将正则化方法与Gmres算法相结合给出了正则化Gmres算法,主要研究:正则化Gmres算法在第Ⅰ类Fredholm积分方程求解中的应用。二维及三维的第Ⅰ类Fredholm积分方程的离散与求解一直是反问题的研究领域一个重要课题,并且与关于此模型的图像恢复问题整体构成本文研究的主体内容。   首先,给出了第Ⅰ类Fredholm积分方程及相关图像恢复问题的基本模型,对Gmres算法的收敛性详细推导,并且说明了求解该类问题的难度;其次,提出了正则化Gmres算法与分块正则化Gmres算法,并论证了两个算法的收敛性,与普通Gmres算法不同,提出的两个算法能够有效求解具有不适定性的线性方程组,避免所得数值解不稳定,从不同角度为第Ⅰ类Fredholm积分方程求解提供了一种新思路;并且将提出的两个算法应用到第Ⅰ类Fredholm积分方程中去,分别给出二维、三维的情况下Fredholm方程的两种离散方式,经过离散得出线性方程组再利用所提出算法求得它的数值解;最后将其应用于图像恢复模型中,并与Tikhonov正则化算法、TSVD正则化算法、Gmres算法等进行了对比分析。   通过数值模拟与对比结果可以分析得到正则化Gmres算法与分块正则化Gmres算法的可行性及有效性,结果表明分块正则化Gmres算法具有计算速度快、精度高的优点,并且在图像恢复模型应用中能够明显改善图像恢复的质量。
其他文献
图像分割是一项应用广泛的图像处理技术,可很大程度的减少后面高级图像处理所需的数据量,且不影响结构特征相关的信息,在图像处理中起关键作用。在图像分割中出现误差将影响
多属性决策是现代决策科学的一个重要研究领域,广泛应用于工程、经济、市场分析、管理等实际问题中。随着决策对象的进一步复杂化,同时人类思维具有模糊性,不确定性多属性决策已
最优化理论和方法在社会中有着广泛的应用,如工程方案设计、金融、生产调度等。目前,非线性半光滑方程组的有效求解成为最优化问题研究的重要方面,而求解线性不等式约束的非线性
得到两类2×2对称算子矩阵乘积的本征函数系的完备性定理,并将定理应用于4×4的斜对角无穷维Hamilton算子.针对可分Hamilton系统,提出了改进的分离变量法.为验证新方法的正确性
图像拼接是研究如何利用几幅小视角的相关图像得到一幅高分辨率、宽视角的图像技术。用图像拼接的方法获得高分辨率、超宽视角的全景图像,可有效地降低因为特殊摄像设备价格昂
ENO格式通过选择非固定插值模板的方法来实现高精度格式。本文在ENO思想的基础上,通过采用径向基函数代替多项式函数对原函数进行重构,形成了基于径向基插值的ENO格式和基于径
民族高等院校是我国高等教育事业的重要组成部分。新的历史时期, 对民族高等院校的大学生加强民族团结教育具有重要的现实意义和长远意义,以课堂教学,课外实践活动,校园文化建设,
数学是一门注重逻辑的学科,对于思维和意识都处于初始阶段的小学生来说,理解起来十分困难.数学知识中涉及图形和公式类内容较多,这些内容不断变换组合,潜在着特殊的规律.在小
生物信息学是建立在数学、计算机科学和生命科学等学科基础之上的一门交叉学科,包含了生物信息的获取、加工、存储、分配、分析、解释等在内的各个方面。生物信息学的研究内容
基于矢量阵列的信号处理原理是将不同的矢量传感器分别放置在水下不同的位置,组成传感器阵列,然后通过这些阵列接收并处理声源发出的信号,提取信号的相关信息及特征,同时抑制