论文部分内容阅读
Toeplitz矩阵作为一类非常重要的矩阵近年来被学者们广泛研究,Toeplitz矩阵具有特殊的结构,在工程计算上,物理学中,天体学中都有广泛的应用。因此,求解Toeplitz矩阵方程组成为矩阵计算的热门课题。知道,求解Toeplitz方程组的方法中,已知的有直接法和迭代法,直接法已经了解了很多,而迭代法是要将Toeplitz矩阵进行分裂之后再迭代求解的一种方法。熟知的关于Toeplitz矩阵的分裂形式有HS(Hermitian matrix and skew hermitian matrix)分裂,CS(Circulant matrix and skew circulant matrix)分裂等等。本文将继续研究Toeplitz线性系统的迭代求解法。 本文介绍了两种求解Toeplitz线性系统的循环与反循环矩阵分裂的迭代方法,第一种方法称为复参数的CSCS方法,是对Toeplitz矩阵的CSCS方法做了推广, 同时通过数值实验发现,复参数的CSCS方法比实参数的CSCS方法收敛速率更快;第二种方法介绍了一种新的循环与反循环矩阵的分裂形式,并在最后证明其收敛性。 第一章为绪论,主要介绍了选题的依据及意义,以及国内外研究的现状和一些基本知识。在基本知识这一节中,介绍了非Hermite型正定矩阵的HSS方法和求解Toeplitz矩阵方程组的CSCS方法,为本文后续研究做了铺垫。 第二章将Toeplitz矩阵的CSCS方法的参数取值范围扩大,将其扩大到复数域,把它定义为复参数的CSCS方法,最后讨论了其收敛性。 第三章介绍了一种关于Toeplitz矩阵循环与反循环矩阵分裂的迭代方法,这是一种不同于第二章的分裂形式,通过定理的证明,知道当对矩阵元素做了一定的限制之后,迭代方法才可以收敛。 本文的结论为,复参数的CSCS方法是收敛的;Toeplitz矩阵循环与反循环矩阵的分裂的迭代方法,在对元素做一定限制的情况下,是可以收敛的。