【摘 要】
:
在许多实际系统中,如航空航天、化工冶金、电网等,由于测量的不灵敏、信号的传输和元件的老化等原因,系统中不确定性和时滞普遍存在,并且是造成系统不稳定和性能变坏的主要原
论文部分内容阅读
在许多实际系统中,如航空航天、化工冶金、电网等,由于测量的不灵敏、信号的传输和元件的老化等原因,系统中不确定性和时滞普遍存在,并且是造成系统不稳定和性能变坏的主要原因.由于时滞是自然界中广泛存在而又不可避免的一种现象,时滞的存在使得系统的分析和综合变的更加复杂和困难,同时时滞往往是系统不稳定的根源.因此,分析时滞系统的稳定性有着理论和实际的意义.本文通过构造Lyapunov泛函,讨论时变时滞离散线性系统的H_∞控制问题.在第一章,介绍了时滞系统及其H_∞控制问题的背景知识,国内外研究成果,同时对本文要研究的问题做了简单的陈述,并简略地介绍了本文的组织结构和符号说明.在第二章主要研究一类状态具有时变时滞的离散时间线性系统的H_∞控制问题.文中H_∞控制律被假设为无记忆状态反馈,时变时滞的大小是有上界的,通过求解无时滞具有单一H_∞范数边界的离散时间线性系统的H_∞控制问题来解决时变时滞离散时间线性系统的H_∞控制问题.在第三章,利用第二章的方法研究一类状态和输入同时具有时变时滞的离散时间线性系统的H_∞控制问题.对上述两个问题的结论,本文给出了有效的可行LMI问题解.
其他文献
本文引入了q-李代数的定义,通过定义我们可以看出q-李代数是一般李代数的一种推广,也就是说,当我们取定某个特定的值后,q-李代数便是一般李代数。在文章中我们仿照一般李代数给出
2006年,刘信生等在[10]中提出了边共染色的概念.图G的边共染色是指G的一个边集划分E1,E2,…,Er,使得每个Ei(1≤I≤r)构成星或匹配.而使得G有边共染色的最小颜色数称为边共色数,记作
本论文讨论了Cn中单位球上μ-Zygmund空间的几种等价刻画和μ-Bloch空间上的原子分解,同时给出了μ-Bloch空间上函数的一种积分表示以及μ-Bloch空间和Bergman型空间的对偶关
食饵庇护现象刻画了自然生态系统中为了避免食饵被捕食者捕食,而以不同形式建立食饵避难所的机制,并在维护生态系统平衡及保护生物多样性中发挥着重要作用.三种群模型在整个种
可用带宽是重要的网络资源,对其准确的估计与测量是网络运营维护必须解决的问题之一,而对路径精确的带宽测量较难实现。本文基于pathChirp算法,提出一种改进算法M-pathChirp(Mod
论文主要研究了一类具有齐性核的Marcinkiewicz积分高阶交换子μm Ω,b的一些有界性问题.通过Herz型Hardy空间的原子和分子分解理论。利用高阶交换子μm Ω,b的Lq有界性结果,
本文主要研究了p-adic数域Qp上的Fourier分析的一些基本理论。 首先介绍了p-adic数域,Fourier分析及p-adic数域上的Fourier分析的发展历史及本文的研究意义。回顾了国内外
众所周知,Smarandache问题在数论研究中占有十分重要的位置,许多著名的数论难题都与之密切相关.因而在这一领域取得任何实质性进展都必将对初等数论的发展起到积极的推动作用!
化学是一门以实验为基础的学科,化学实验对于化学教学目标的全面落实具有重要的作用。实验教学不仅可激发学生学习化学的兴趣,而且还能培养学生观察能力、思维能力,发展学生的智
在这篇文章中我们讨论了一类动力系统中与吸引子相关的一些问题,介绍了动力系统的发展状况,具体考查了反应扩散方程的解的长时间的行为,在方程的解的存在性和唯一性的条件下,我们