论文部分内容阅读
信赖域方法和线搜索技术是求解非线性优化问题整体收敛性的两种基本策略。信赖域方法主要思想是在当前迭代点的某个邻域内极小化目标函数的一个合适的二次模型,并不断校正信赖域半径,得到一个可以接受的方向步。信赖域方法可以用来求解非凸近似模型,具有很强的收敛性。线搜索技术通过使用所谓的回溯方法选择的步长,很容易满足严格可行性,在确定新的迭代点时计算量较小。过滤方法最初是由Fletcher和Leyffer提出的,用来保证求解非线性约束规划算法的全局收敛性,其主要思想在于如果试探点在减少了目标函数或者约束违反度的情况下,则接受该试探点。这种通过使用多目标优化的概念,可替代罚参数的调整可能出现的问题。非单调技术可以嵌入到信赖域或过滤线搜索的框架中,用来求解非线性最优化问题。正如许多研究者指出,非单调的方案可以提高找到全局最优值的可能性,并且非单调的准则将加快一些病态的情况下的收敛过程。本文提出了结合非单调线搜索过滤技术的仿射内点信赖域方法,建立求解线性不等式约束优化问题的算法,在合理的条件下获得此算法的全局收敛性与快速的局部收敛速率。数值结果表明了算法的有效性。 无导数算法不强制目标函数的梯度信息。因此,对于复杂的函数,这种方法可以减少性能的计算成本。Chen和Sun提出了一种渐弱多维过滤线搜索方法求解无约束优化问题。其基本思想是引入非精确线搜索步长到多维过滤中,当步长趋向零时,滤子的作用也越来越弱。本文给出了一种结合非单调线搜索渐弱过滤技术的没有非退化假设的仿射内点无导数信赖域算法求解非线性界约束优化问题。该算法的目的是构造由目标函数的结构多项式插值模型的问题。所提出的新方法保证了一阶和二阶临界点的全局收敛性,而无需使用传统的线搜索过滤技术中的切换条件。利用指示函数来定义新的仿射矩阵,以避免非退化性。该方法被证明,在强二阶充分条件和没有非退化的假设下,具有局部二次收敛速率。初步的数值结果表明算法的可行性与有效性。 有各种证据支持的说法,随机模型可以产生确定性优化的实际和理论利益。大多数当代随机方法产生随机的沿着所有可能使得目标函数的较小的水平下降的方向。在直接搜索中,随机正生成集被研究,能够在性能和非光滑问题的收敛性理论中获益。本文给出了一种结合非单调线搜索渐弱过滤技术的基于概率模型的仿射内点无导数信赖域算法求解有界变量约束优化问题。在合理的条件下获得此算法的全局收敛性与快速的局部收敛速率。数值结果表明了算法的有效性。 最后对全文进行总结,并且提出进一步的研究方向。