论文部分内容阅读
随着当代武器装备和电子器件的迅速增长,例如大功率真空电子器件、军舰和装甲导弹等系统,在微波器件设计、卫星通信及雷达等领域都各自发挥着重要的作用。实际上,这些设备本身表面可能设置有各类天线、传感器等细小装置,同时组成的介质材料往往是各不相同的,使得整个设备的物理特性变得非常复杂,因此具有几何及材料的多尺度特征。此外,在现代战场中,为了发挥不同的战场功效,辐射源的数量变得越来越大,而这导致电磁环境日趋复杂,尤其是高功率微波等强电磁脉冲形成的电磁脉冲场,对多尺度装备来说可能是致命的。因此,为保证多尺度装备能够在复杂电磁环境中充分发挥其战斗效能,研究其电磁参数是刻不容缓的。然而现有的数值计算方法往往不能够很好地满足当前复杂环境下多尺度问题的高性能、高精度的三维电磁仿真。因此,迫切需要针对复杂电磁环境下的多尺度问题开展更加精确高效的算法研究,为仿真分析软件奠定可靠的理论基础。本论文主要围绕复杂电磁环境下的多尺度问题在频域和时域上的仿真分析开展研究工作,主要内容及创新点体现在以下五个方面:1、基于矢量有限元理论,以微波管输入输出窗为研究对象,提出了一种模型降阶的自适应快速扫频方法。该方法主要包含以下三个技术:1)通过切比雪夫函数逼近方式得到降阶模型的展开子空间,避免了Taylor级数展开求导运算的耗时、复杂性。2)提出内外嵌套的误差判定条件,以便快速准确地寻找最佳降阶空间。3)定义收敛半径,提出一个有效的自适应扫频技术,进而得到全频带的频变参数。2、针对三维时域Maxwell方程的求解,对时域间断伽辽金算法(DGTD)展开了系统的研究工作。通过四面体单元进行网格剖分,采用形式简单的节点标量基函数,并结合数值通量形成DGTD的半离散格式。在时间离散上,通过应用显式的时间迭代格式来得到DGTD的全离散格式,根据DGTD单元性,就可以迭代出每个单元上的场值。此外,本文详细给出了边界处理、各种激励源形式、DGTD的加源方式及稳定性分析。通过数值算例,验证了该算法的准确性,为后期研究显隐算法奠定扎实的理论基础。3、为了降低DGTD中自由未知量(DOFs)个数,由频域杂交间断伽辽金算法(HDG)发展而来,结合隐式时间格式,提出一种时域杂交间断伽辽金算法(imHDGTD)用于求解三维时域Maxwell方程。该方法主要包含以下五个技术:1)经过四面体的网格剖分后,对体单元和面单元采用一致的标量叠层基函数,为后期矩阵预处理做准备。2)空间离散时,在面单元上引入杂交量来替换DGTD中的数值通量,结合守恒条件,最终形成一个全局线性系统。由于全局系统的变量只有杂交量,因此大大降低了DOFs。3)根据全局线性系统,在时间离散上采用无条件稳定的隐式Crank–Nicolson(CN)时间格式,能够有效扩大显式时间格式在细网格处的时间步长,进而推导出imHDGTD的全离散格式。4)本文将杂交量视为待求常量,从而减少杂交量时间迭代的计算消耗。一旦根据全局线性系统求出杂交量,便可以由局部线性系统得到每个单元的场值。5)拓展imHDGTD算法的边界应用,不仅给出HDG算法常用的吸收边界条件(absorbing boundary condition,ABC)边界形式,还在imHDGTD中推导了完全匹配层(Perfectly Matched Layer,PML)边界形式,并成功用于波导传输问题。4、为了降低隐式时间格式求解全局矩阵(随网格数、阶数的增大,可能存在病态矩阵)的复杂度,在时域imHDGTD算法中首次提出了一种有效的矩阵处理技术:通过基函数的叠层性,采用p型多重网格预处理技术来提升imHDGTD算法对全局线性系统的求解速度。现有HDG大都基于无源时域Maxwell方程在边界处进行加源处理,考虑到在实际电磁场问题中,激励源的类型是多样化的。因此,本文基于有源的时域Maxwell方程,对前期的imHDGTD进行了扩展研究,并针对不同电流源和磁流源项给出了具体的处理技术。5、为了进一步提升时域算法求解复杂多尺度问题的计算性能,本文将显式ex DGTD与隐式imHDGTD方法的优点相结合,提出了一种新型的三维显隐时域电磁学数值方法(ex-imHDGTD),该方法主要包含以下四个技术:1)根据离散网格的尺寸,将整个计算区域拆分为粗、细两个子网格部分。在粗网格上采用ex DGTD方法,在细网格区域采用imHDGTD方法。2)在时间迭代上,运用Verlet时间格式,从而避免全显式时间格式的时间步长受限于细网格尺寸的稳定性,同时也避免采用全隐式时间格式导致产生很大维数的系统矩阵。3)边界处理,首次将PML和ABC边界分别应用到提出的显隐ex-imHDGTD算法中。4)首次将总场格式、总场散射场的加源格式运用到新型的显隐算法中。最后,通过复杂的波导、飞机等算例,验证该算法具有较少的DOFs,相比ex DGTD、imHDGTD以及传统的显隐DGTD方法,能够大大缩减总体仿真的内存与计算时间,这对时域电磁学多尺度问题的求解提供了一种分析方法。